forked from cleardusk/3DDFA
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathio_utils.py
64 lines (47 loc) · 1.32 KB
/
io_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
#!/usr/bin/env python3
# coding: utf-8
import os
import numpy as np
import torch
import pickle
def mkdir(d):
if not os.path.isdir(d) and not os.path.exists(d):
os.system(f'mkdir -p {d}')
def _get_suffix(filename):
"""a.jpg -> jpg"""
pos = filename.rfind('.')
if pos == -1:
return ''
return filename[pos + 1:]
def _load(fp):
suffix = _get_suffix(fp)
if suffix == 'npy':
return np.load(fp)
elif suffix == 'pkl':
return pickle.load(open(fp, 'rb'))
def _dump(wfp, obj):
suffix = _get_suffix(wfp)
if suffix == 'npy':
np.save(wfp, obj)
elif suffix == 'pkl':
pickle.dump(obj, open(wfp, 'wb'))
else:
raise Exception(f'Unknown Type: {suffix}')
def _load_tensor(fp, mode='cpu'):
if mode.lower() == 'cpu':
return torch.from_numpy(_load(fp))
elif mode.lower() == 'gpu':
return torch.from_numpy(_load(fp)).cuda()
def _tensor_to_cuda(x):
if x.is_cuda:
return x
else:
return x.cuda()
def _load_gpu(fp):
return torch.from_numpy(_load(fp)).cuda()
_load_cpu = _load
_numpy_to_tensor = lambda x: torch.from_numpy(x)
_tensor_to_numpy = lambda x: x.cpu()
_numpy_to_cuda = lambda x: _tensor_to_cuda(torch.from_numpy(x))
_cuda_to_tensor = lambda x: x.cpu()
_cuda_to_numpy = lambda x: x.cpu().numpy()