-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrsa.cpp
425 lines (403 loc) · 11.2 KB
/
rsa.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
//
// main.cpp
// rsa_final
//
// Created by 郭倜维 on 2018/10/10.
// Copyright © 2018 郭倜维. All rights reserved.
//
#define _CRT_SECURE_NO_DEPRECATE
#pragma warning( disable : 4996)
#include <openssl/bn.h>
#include <stdio.h>
#include <time.h>
#include <openssl/rsa.h>
#include <stdlib.h>
#define T 1024
#define BN_RAND_TOP_ANY -1
#define BN_RAND_BOTTOM_ODD 1
BIGNUM* ExpBySquare(BIGNUM * m, BIGNUM * e, BIGNUM * n); //模重复平方算法
BIGNUM* ChineseReminder(BIGNUM* m, BIGNUM* e, BIGNUM* n, BIGNUM* p, BIGNUM* q); //中国剩余定理
BIGNUM* mgml(BIGNUM* y, BIGNUM* dd, BIGNUM* n);
BIGNUM* mgml1(BIGNUM* y, BIGNUM* dd, BIGNUM* n);
bool mod_reverse(BIGNUM*ret, const BIGNUM*a, const BIGNUM*n, BN_CTX *CTX); //求逆
bool Miller_Rabin(BIGNUM * bn);
BIGNUM* Mont_mul(BIGNUM* a, BIGNUM* b, BIGNUM* N); //蒙哥马利乘法
int main(void)
{
unsigned long t1, t2;
int time1, time2, time3;
BIGNUM *p = BN_new();
BIGNUM *q = BN_new();
BIGNUM *r = BN_new();
BIGNUM *p_1 = BN_new();
BIGNUM *q_1 = BN_new();
BIGNUM *n = BN_new();
BIGNUM *n_1 = BN_new();
BIGNUM *e = BN_new();
BIGNUM *d = BN_new();
BIGNUM *dd = BN_new();
BN_CTX *ctx = BN_CTX_new();//申请一个上下文结构
do{
BN_rand(p, 1024, BN_RAND_TOP_ANY, BN_RAND_BOTTOM_ODD);
} while (!Miller_Rabin(p));
do{
BN_rand(q, 1024, BN_RAND_TOP_ANY, BN_RAND_BOTTOM_ODD);
} while (!Miller_Rabin(q));
BN_copy(p_1, p);
BN_copy(q_1, q);
BN_sub_word(p_1, 1);//p_1=p-1
BN_sub_word(q_1, 1);//q_1=q-1
BN_mul(n, p, q, ctx);//n=p*q
BN_mul(n_1, p_1, q_1, ctx);//nn=p_1*q_1=(p-1)(q-1)
int t = 0;
while (!t)
{
BN_rand_range(e, n_1);//产生公钥e满足0<e<nn=(p-1)(q-1)
BN_gcd(r, e, n_1, ctx);//r=gcd(e,nn)
if (BN_is_one(r)) t = 1;
}
mod_reverse(d, e, n_1, ctx);//d是e的逆
BN_copy(dd, d);
char* cp = BN_bn2dec(p);//p转化为10进制字符串
char* cq = BN_bn2dec(q);//q转化为10进制字符串
char* cn = BN_bn2dec(n);
char* ce = BN_bn2dec(e);
char* cd = BN_bn2dec(d);
printf("The public key is:\n");
printf("n=\n%s\n\n", cn);
printf("e=\n%s\n\n", ce);
printf("The private key is:\n");
printf("p=\n%s\n\n\n", cp);
printf("q=\n%s\n\n\n", cq);
printf("d=\n%s\n\n\n", cd);
BIGNUM *x = BN_new();
BIGNUM *y = BN_new();
BIGNUM *dky1 = BN_new();
BIGNUM *z = BN_new();
BIGNUM *dky3 = BN_new();
BIGNUM *dky4 = BN_new();
BN_rand(x, 936, 0, 0);//产生一个伪随机数x,大小为936bits
BN_mod_exp(y, x, e, n, ctx);//y=x^e mod n
BN_mod_exp(dky1, y, d, n, ctx); //dky1=y^d mod n
t1 = clock();
z = ExpBySquare(y, d, n);
t2 = clock();
time1 = (double)(t2 - t1);
t1 = clock();
dky3 = ChineseReminder(y, dd, n, p, q);
t2 = clock();
time2 = (double)(t2 - t1);
t1 = clock();
dky4 = mgml(y, dd, n);
//BN_add(dky4, dky4, x);
t2 = clock();
time3 = (double)(t2 - t1);
char* cx = BN_bn2dec(x);//将x转为十进制
char* cy = BN_bn2dec(y);
char* cdky1 = BN_bn2dec(dky1);
char* cdky2 = BN_bn2dec(z);
char* cdky3 = BN_bn2dec(dky3);
char* cdky4 = BN_bn2dec(dky4);
printf("plaintext m=\n%s\n\n", cx);
printf("RSA加密得到密文 y=\n%s\n\n", cy);
printf("直接解密 dky=\n%s\n\n", cdky1);
printf("利用模重复平方解密 dky=\n%s\n\n", cdky2);
printf("时间为%dms\n\n", time1);
printf("利用中国剩余定理解密 dky=\n%s\n\n", cdky3);
printf("时间为%dms\n\n", time2);
printf("利用蒙哥马利法解密 dky=\n%s\n\n", cdky4);
printf("时间为%dms\n\n", time3);
getchar();
}
/*辗转相除法求逆*/
bool mod_reverse(BIGNUM*ret, const BIGNUM*a, const BIGNUM*n, BN_CTX *CTX)
{
BIGNUM *a0 = BN_new();
BIGNUM *b0 = BN_new();
BIGNUM *t0 = BN_new();
BIGNUM *q = BN_new();
BIGNUM *r = BN_new();
BIGNUM *s0 = BN_new();
BIGNUM *s = BN_new();
BIGNUM *mid_1 = BN_new();
BIGNUM *mid_2 = BN_new();
BIGNUM*temp = BN_new();
BIGNUM*zero = BN_new();
BN_CTX *ctx = BN_CTX_new();
BIGNUM *t = BN_new();
BN_copy(a0, a);
BN_copy(b0, n);
BN_zero(t0);
BN_zero(zero);
BN_one(t);
BN_one(s0);
BN_zero(s);
BN_div(q, r, a0, b0, ctx);//q=a0/b0,r=a0%b0
while (!BN_is_zero(r))
{
BN_mul(mid_1, q, t, ctx);//mid_1=q*t
BN_sub(temp, t0, mid_1);//temp=t0-mid_1
BN_copy(t0, t);//t0=t
BN_copy(t, temp);//t=temp
BN_mul(mid_2, q, s, ctx); //mid_2=q*s
BN_sub(temp, s0, mid_2);//temp=s0-mid_2
BN_copy(s0, s);//s0=s
BN_copy(s, temp);//s=temp
BN_copy(a0, b0);//a0=b0
BN_copy(b0, r);//b0=r
BN_div(q, r, a0, b0, ctx);//q=a0/b0,r=a0%b0
}
BN_copy(r, b0);//r=b0
while (BN_cmp(s, zero) == -1)//保证求得逆是正数
BN_add(s, s, n);//s=s+n
BN_mod(ret, s, n, ctx);//ret=s%n
if (!BN_is_one(b0))
{
printf("b has no inverse modulo a");
return false;
}
return true;
}
/*利用模重复平方法*/
BIGNUM* ExpBySquare(BIGNUM * m, BIGNUM * e, BIGNUM * n)
{
BIGNUM* b = BN_new();
BIGNUM* out = BN_new();
BN_one(out);
BN_copy(b, m);
int k;
k = BN_num_bits(e);
BN_CTX * ctx = BN_CTX_new();
for (int i = 0; i < k; i++)
{
if (BN_is_bit_set(e, i))
{
BN_mod_mul(out, out, b, n, ctx); // a = a*b; m = m^2
BN_mod_mul(b, b, b, n, ctx);
}
else
{
BN_mod_mul(b, b, b, n, ctx);
}
}
BN_free(b);
BN_CTX_free(ctx);
return out;
}
/*利用中国剩余定理*/
BIGNUM* ChineseReminder(BIGNUM* m, BIGNUM* e, BIGNUM* n, BIGNUM* p, BIGNUM* q)
{
BN_CTX* ctx = BN_CTX_new();
BIGNUM* result1 = BN_new();
BIGNUM* result2 = BN_new();
BIGNUM* x1 = BN_new();
BIGNUM* x2 = BN_new();
BIGNUM* p_n = BN_new();
BIGNUM* q_n = BN_new();
BIGNUM* out = BN_new();
result1 = ExpBySquare(m, e, p);
result2 = ExpBySquare(m, e, q);
BN_mod_mul(x1, result1, q, n, ctx);
BN_mod_mul(x2, result2, p, n, ctx);
BN_mod_inverse(q_n, q, p, ctx);
BN_mod_inverse(p_n, p, q, ctx);
BN_mod_mul(x1, x1, q_n, n, ctx);
BN_mod_mul(x2, x2, p_n, n, ctx);
BN_mod_add(out, x1, x2, n, ctx);
BN_free(x1);
BN_free(x2);
BN_free(p_n);
BN_free(q_n);
BN_free(result1);
BN_free(result2);
return out;
}
/*利用蒙哥马利法*/
BIGNUM* mgml1(BIGNUM* y, BIGNUM* dd, BIGNUM* n)
{
BIGNUM *dky4 = BN_new();
BN_one(dky4);
BN_CTX *ctx = BN_CTX_new();//申请一个上下文结构
//BN_CTX_init(ctx);//将所有项赋值为0
//Mont_mul(y, dd, n);
do
{
if (BN_is_odd(dd) == 1)//如果dd是1
{
BN_sub_word(dd, 1);//dd=dd-1
Mont_mul(y, dd, n);
BN_mod_mul(dky4, dky4, y, n, ctx);//dky4=(dky4*y)%n
}
else
{
BN_div_word(dd, 2); //dd=dd/2
Mont_mul(y, dd, n);
BN_mod_sqr(y, y, n, ctx);//y=(y*y)%n
}
} while (!BN_is_zero(dd));//dd=0时跳出循环
return dky4;
}
/*蒙哥马利*/
BIGNUM* Mont_mul(BIGNUM* a, BIGNUM* b, BIGNUM* N)
{
//BIGNUM *k = BN_new();
BIGNUM *r = BN_new();
BIGNUM *c = BN_new();
BN_CTX *ctx = BN_CTX_new();//申请一个上下文结构
//BN_CTX_init(ctx);//将所有项赋值为0
int k;
BN_mul(c, a, b, ctx);//c=a*b
k = BN_num_bits(N);
k += 1;
BN_set_bit(r, k);//r=1<<k
for (int i = 0; i < k-1; i++)
{
if (!(BN_is_odd(c)))
BN_rshift(c, c, 1);//c右移一位
else{
BN_add(c, c, N);//c=c+N
BN_rshift(c, c, 1);//c右移一位
}
if (BN_cmp(c, N) >= 0)
{
BN_sub(c, c, N);
}
}
return c;
}
BIGNUM* mgml(BIGNUM* y, BIGNUM* dd, BIGNUM* n)
{
BIGNUM *dky4 = BN_new();
BN_one(dky4);
BN_CTX *ctx = BN_CTX_new();//申请一个上下文结构
//BN_CTX_init(ctx);//将所有项赋值为0
do
{
if (BN_is_odd(dd) == 1)//如果dd是1
{
BN_sub_word(dd, 1);//dd=dd-1
//Mont_mul(y, dd, n);
BN_mod_mul(dky4, dky4, y, n, ctx);//dky4=(dky4*y)%n
}
else
{
BN_div_word(dd, 2); //dd=dd/2
//Mont_mul(y, dd, n);
BN_mod_sqr(y, y, n, ctx);//y=(y*y)%n
}
} while (!BN_is_zero(dd));//dd=0时跳出循环
return dky4;
}
/*素性检测*/
bool Miller_Rabin(BIGNUM * bn)
{ //素性检测
BIGNUM*n_plus_one = BN_new();
BIGNUM* n = BN_new();
BIGNUM* k = BN_new();
BIGNUM* m = BN_new();
BIGNUM* a = BN_new();
BIGNUM* b = BN_new();
BIGNUM* gcd = BN_new();
BIGNUM* temp = BN_new();
BIGNUM* two = BN_new();
BN_CTX* ctx = BN_CTX_new();
BN_copy(n, bn);
BN_one(k);
BN_set_word(temp, 2);
BN_set_word(two, 2);
BN_sub(n_plus_one, n, BN_value_one());
BN_gcd(gcd, n_plus_one, temp, ctx);
while (BN_cmp(gcd, temp) == 0)
{
BN_mul_word(temp, 2);
BN_gcd(gcd, n_plus_one, temp, ctx);
BN_add_word(k, 1);
}
BN_sub_word(k, 1);//得到k-1
//printf("k-1:%s\n\n", BN_bn2dec(k));
//出来以后gcd中是2^k
BN_div(m, NULL, n_plus_one, gcd, ctx);
BN_rand_range(a, n);//产生随机数a
BN_mod_exp(b, a, m, n, ctx);
if (BN_cmp(b, BN_value_one()) == 0)
{
return true;
}
do
{
if (BN_cmp(b, n_plus_one) == 0)
{
return true;
}
else
{
BN_mod_exp(temp, b, two, n, ctx);
BN_copy(b, temp);
BN_sub_word(k, 1);
}
}
while (BN_is_zero(k) != 1);
return false;
/*BIGNUM *bn_m = BN_new();
BIGNUM* b = BN_new();
BIGNUM* b_2 = BN_new();
BIGNUM* a = BN_new();
BN_CTX* ctx = BN_CTX_new();
BIGNUM* _n = BN_new();
BIGNUM* m = BN_new();
BN_zero(bn_m);
BN_add_word(bn_m, 2);
if (!BN_cmp(bn, bn_m)) //bn是否为2,2是素数,是则返回0;
{
BN_free(bn_m);
return true;
}
if (!BN_cmp(bn, BN_value_one()) || !BN_is_odd(bn)) //bn是否为1或者偶数,是则不是素数
{
BN_free(bn_m);
return false;
}
BN_free(bn_m);
BN_copy(m, bn);
BN_sub_word(m, 1); //u=n-1;
int k;
for (k = 0; !BN_is_bit_set(m, 0); k++) //
{
BN_rshift1(m, m); //求n-1=(2^k)*m的k值和m值
}
BN_copy(_n, bn);
BN_sub_word(_n, 1); //_n=bn-1
BN_rand_range(a,bn); //随机选取整数a,a<bn
for (int j = 0; j < k; j++) //j=0~k-1
{
BN_mod_mul(b_2, b, b, bn, ctx); //b_2=b^2 % bn
if (!BN_cmp(b_2, BN_value_one()) && BN_cmp(b, BN_value_one()) && BN_cmp(b, _n))
{//b^2 == 1, b != 1, b != n-1;
BN_free(a); //释放
BN_free(m);
BN_free(b);
BN_free(b_2);
BN_free(_n);
BN_CTX_free(ctx);
return false;
}
BN_copy(b, b_2);
}
if (BN_cmp(b_2, BN_value_one())) //a^(2^k * m) != 1;
{
BN_free(a);
BN_free(m);
BN_free(b);
BN_free(b_2);
BN_free(_n);
BN_CTX_free(ctx);
return false;
}
BN_free(a);
BN_free(m);
BN_free(b);
BN_free(b_2);
BN_free(_n);
BN_CTX_free(ctx);
return true;*/
}