-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain_hra_2class_unified.py
68 lines (48 loc) · 3.21 KB
/
train_hra_2class_unified.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
# -*- coding: utf-8 -*-
""" Top-level (abstract) script for training (fine-tuning) various CNNs on the HRA dataset with 2 classes.
Example
--------
>>> python train_hra_2class_unified.py --pre_trained_model vgg16 --nb_of_conv_layers_to_fine_tune 1 --nb_of_epochs 50
"""
from __future__ import print_function
import argparse
import os
from applications.hra_utils import _obtain_weights_CSVLogger_filenames,_obtain_train_mode, _obtain_first_phase_trained_weights
from wrappers.hra_transfer_cnn_manager import HRA_Transfer_CNN_Manager
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument("--pre_trained_model", type = str,help = 'One of `vgg16`, `vgg19`, `resnet50` or `vgg16_places365`')
parser.add_argument("--nb_of_conv_layers_to_fine_tune", type = int, default=None, help = "Number of conv. layers to fine-tune")
parser.add_argument("--nb_of_epochs", type = int, help = "Total number of iterations on the data")
args = parser.parse_args()
return args
args = get_args()
# feature extraction case
if args.nb_of_conv_layers_to_fine_tune is None:
first_phase_trained_weights = None
# fine-tune case
elif args.nb_of_conv_layers_to_fine_tune in {1, 2, 3}:
first_phase_trained_weights = _obtain_first_phase_trained_weights(violation_class = args.violation_class, model_name= args.pre_trained_model)
# check if the first_phase_trained_weights does exist
if os.path.isfile(first_phase_trained_weights) is False:
raise IOError("No such weights file: `" + first_phase_trained_weights + "`. ")
train_mode = _obtain_train_mode(nb_of_conv_layers_to_fine_tune=args.nb_of_conv_layers_to_fine_tune)
weights_filename, CSVLogger_filename = _obtain_weights_CSVLogger_filenames(violation_class='dp',
train_mode=train_mode,
model_name=args.pre_trained_model,
nb_of_conv_layers_to_fine_tune=args.nb_of_conv_layers_to_fine_tune
)
modelCheckpoint_quantity = 'val_loss'
earlyStopping_quantity = 'val_loss'
transfer_cnn_manager = HRA_Transfer_CNN_Manager(violation_class = args.violation_class,
train_mode=train_mode,
pre_trained_model = args.pre_trained_model,
nb_of_conv_layers_to_fine_tune = args.nb_of_conv_layers_to_fine_tune,
weights_to_file = weights_filename,
first_phase_trained_weights = first_phase_trained_weights,
nb_of_epochs = args.nb_of_epochs,
modelCheckpoint_quantity = modelCheckpoint_quantity,
earlyStopping_quantity = earlyStopping_quantity,
CSVLogger_filename = CSVLogger_filename,
)
transfer_cnn_manager.train()