-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathfeatures.html
199 lines (185 loc) · 7.79 KB
/
features.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
<!doctype html>
<html lang="en">
<head>
<!-- Google tag (gtag.js) -->
<script async src="https://www.googletagmanager.com/gtag/js?id=G-PFSFGXGB5T"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
gtag('config', 'G-PFSFGXGB5T');
</script>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1">
<title>Features</title>
<meta name="description" content="GPU Optimized Monte Carlo (GOMC) is open-source software for simulating many-body molecular systems using the Metropolis Monte Carlo algorithm. Capable of running on single and multi-core architecture.">
<meta name="keywords" content="monte carlo,gpu,adsoption,free energy,self assembly,phase equilibrium,vapor liquid,parallel computing,cuda">
<meta name="author" content="Younes Nejahi">
<meta name="application-name" content="GPU Optimized Monte Carlo (GOMC)">
<link rel="shortcut icon" type="image/x-icon" href="images/favicon.ico">
<link rel="stylesheet" href="styles/styles.css">
</head>
<body>
<!-- insert navigation bar -->
<script id="insert_menu" src="scripts/nav.js"></script>
<div class="containerFlexible">
<div class="row">
<div class="column">
<img class="featureImage" src="images/features/Vapor-Liquid-Equilibrium.png" alt="Vapor-Liquid Graph">
</div>
<div class="column">
<div class="blueBlock">
<p>Vapor-Liquid Equilibrium</p>
</div>
<p class="paragraphBlock">
GOMC is capable of performing Gibbs ensemble Monte Carlo and grand
canonical histogram-reweighting Monte Carlo simulations to predict
the vapor-liquid equilibria of pure components and multicomponent
mixtures. A variety of advanced configurational-bias algorithms,
such as coupled-decoupled configurational-bias, molecular exchange
Monte Carlo, configurational-bias regrowth, and crankshaft, are
included to enhance the sampling of phase space.
</p>
</div>
</div>
<hr class="siteBlue">
<div class="row">
<div class="column">
<img class="featureImage" src="images/features/Adsorption.png" alt="Adsorption Graphic">
</div>
<div class="column">
<div class="blueBlock">
<p>Adsorption</p>
</div>
<p class="paragraphBlock">
GOMC supports simulations of adsorption in rigid porous materials
and can be used for high through put screening of materials for
gas storage and separation. A tool to take structures from the
<!-- broken link -->
<a href="https://zenodo.org/record/7691378">CoRE database</a>
and automatically setup simulations for high
throughput screening may be found in our
<a href="https://github.com/GOMC-WSU/Workshop/tree/HTS">GitHub repository</a>.
<br>
In the future, our HTS code will be integrated into the Molecular
Simulation Design Framework (
<a href="https://github.com/mosdef-hub">MoSDeF</a>
) toolkit.
</p>
</div>
</div>
<hr class="siteBlue">
<div class="row">
<div class="column">
<img class="featureImage" src="images/features/Force-Field-Optimization.jpeg" alt="Adsorption Graphic">
</div>
<div class="column">
<div class="blueBlock">
<p>Force Field Optimization</p>
</div>
<p class="paragraphBlock">
GOMC has been widely used to optimize the non-bonded potential potential,
using grand canonical histogram-reweighting Monte Carlo simulation. In
addition, GOMC simulation output (simulation frame) can be combined with
Multistate Bennett Acceptance Ratio (
<a href="https://pubs.acs.org/doi/pdf/10.1021/acs.jced.8b01232">MBAR</a>
) to predict phase equilibria properties for an arbitrary force field
parameter set that has not been simulated directly.
</p>
</div>
</div>
<hr class="siteBlue">
<div class="row">
<div class="column">
<img class="featureImage" src="images/features/Gibbs-Free-Energy-of-Solvation.png" alt="Gibbs Free Energy Image">
</div>
<div class="column">
<div class="blueBlock">
<p>Gibbs Free Energy of Solvation</p>
</div>
<p class="paragraphBlock">
GOMC can predict Gibbs free energy of solvation in NPT Gibbs ensemble
Monte Carlo simulation. Using the
<a href="https://www.sciencedirect.com/science/article/pii/S0378381218305351">Molecular Exchange Monte Carlo move (MEMC)</a>
, the solute can be inserted into the dense system more efficiently.
The ratio of number density between two phases at equilibrium, yield
the Gibbs free energy of transfer.
</p>
</div>
</div>
<hr class="siteBlue">
<div class="row">
<div class="column">
<img class="featureImage" src="images/features/Free-Energy-Calculation.png" alt="Free Energy Graphic">
</div>
<div class="column">
<div class="blueBlock">
<p>Free Energy Calculation</p>
</div>
<p class="paragraphBlock">
GOMC supports free energy calculation in NVT and NPT ensemble, using
thermodynamic integration (TI) and free energy perturbation (FEP)
methods, such as BAR and MBAR. Post analysis of GOMC energy output
can be done using
<a href="https://github.com/alchemistry/alchemlyb#shirts2008">alchemlyb</a>
python library.
</p>
</div>
</div>
<hr class="siteBlue">
<div class="row">
<div class="column">
<img class="featureImage" src="images/features/Condensed-Phase-Structure.png" alt="Condensed Phase Structure Graphic">
</div>
<div class="column">
<div class="blueBlock">
<p>Condensed Phase Structure</p>
</div>
<p class="paragraphBlock">
GOMC can perform simulations in the NVT and NPT ensembles. GOMC
outputs atomic coordinates in PDB and molecule connectivity in PSF
format. This allows for straightforward visualization and analysis
in
<a href="https://www.ks.uiuc.edu/Research/vmd/">VMD</a>.
</p>
</div>
</div>
<hr class="siteBlue">
<div class="row">
<div class="column">
<img class="featureImage" src="images/features/Support-for-a-wide-range-of-molecule-topologies.png" alt="Molecule Topologies Graphic">
</div>
<div class="column">
<div class="blueBlock">
<p>Support for a wide range of molecule topologies</p>
</div>
<p class="paragraphBlock">
With GOMC, one can simulate nearly any molecular topology, including
multiple rings connected by flexible linkers.
</p>
</div>
</div>
<hr class="siteBlue">
<div class="row">
<div class="column">
<img class="featureImage" src="images/features/High-Performace.png" alt="High Performance Charts">
</div>
<div class="column">
<div class="blueBlock">
<p>High Performance</p>
</div>
<p class="paragraphBlock">
GOMC exhibits both high sampling efficiency as well as excellent
computational performance. GOMC has excellent single core
performance, and also runs on multi-core CPUs using thread-level
OpenMP parallelization, and on GPUs if available. Simulations of
systems from ten to tens of thousands of atoms may be simulated
efficiently with GOMC.
</p>
</div>
</div>
</div>
<!-- insert footer -->
<script id="insert_footer" src="scripts/foot.js"></script>
</body>
</html>