Skip to content

Commit d93228f

Browse files
Parkinson_Disease_Prediction (#18)
This is a python code file for the prediction of Parkinson's disease. It uses the logistic regression algorithm of machine learning to make the prediction. It also calculated the accuracy of the prediction model.
1 parent 387fdef commit d93228f

File tree

1 file changed

+73
-0
lines changed

1 file changed

+73
-0
lines changed

Parkinson_disease_prediction.py

Lines changed: 73 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,73 @@
1+
#Logistic Regression
2+
#importing the required packages
3+
import numpy as np
4+
import pandas as pd
5+
from matplotlib import pyplot as plt
6+
from sklearn.model_selection import train_test_split
7+
from sklearn.preprocessing import StandardScaler
8+
from sklearn.preprocessing import MinMaxScaler
9+
from sklearn.linear_model import LogisticRegression
10+
from sklearn.metrics import accuracy_score
11+
12+
#loading the data
13+
dataset = pd.read_csv('/content/drive/MyDrive/TCR/datasets/parkinsons.csv')
14+
15+
dataset.head()
16+
dataset.shape
17+
dataset.info()
18+
19+
#checking for null values if any
20+
dataset.isnull().sum()
21+
22+
dataset.describe()
23+
24+
#EDA
25+
dataset.status.value_counts()
26+
dataset['status'].value_counts()
27+
dataset.groupby('status').mean()
28+
29+
#dividing the data in features and target
30+
x = dataset.drop(columns=['name', 'status'], axis=1)
31+
y = dataset['status']
32+
33+
x.head()
34+
35+
#test-train split
36+
X_train, X_test, Y_train, Y_test = train_test_split(x, y, test_size=0.10, random_state=2)
37+
print(X_train.shape, X_test.shape, Y_train.shape, Y_test.shape)
38+
39+
#standardising the data for better accuracy
40+
sclaer = StandardScaler()
41+
sclaer.fit(X_train)
42+
X_train = sclaer.transform(X_train)
43+
X_test = sclaer.transform(X_test)
44+
45+
#logistic regression in training data
46+
model = LogisticRegression()
47+
model.fit(X_train, Y_train)
48+
49+
#accuracy check using accuracy score
50+
Y_pred_train = model.predict(X_train)
51+
Y_pred_train_accuracy = accuracy_score(Y_train, Y_pred_train)
52+
print("Accuracy on training Data : ", Y_pred_train_accuracy)
53+
54+
Y_pred_test = model.predict(X_test)
55+
Y_pred_test_accuracy = accuracy_score(Y_test, Y_pred_test)
56+
print("Accuracy on testing data : ", Y_pred_test_accuracy)
57+
58+
#testing the model with data
59+
input_data = x[5:6]
60+
input_data_as_array = np.asarray(input_data)
61+
input_data_reshaped = input_data_as_array.reshape(1, -1)
62+
std_scaler = sclaer.transform(input_data_reshaped)
63+
prediction = model.predict(std_scaler)
64+
print(prediction)
65+
if (prediction[0] == 0):
66+
print("The Person doesnt have parkinson diesease")
67+
else:
68+
print("The Person is suffering from Parkinson diesease")
69+
70+
#comparing the predicted value with actual value
71+
print("The actual value is : ", y[5:6])
72+
73+
#This is the end of file, please ignore this comment.

0 commit comments

Comments
 (0)