Skip to content

Commit f18f61f

Browse files
authored
Merge pull request #84 from LaraibNoor/laraib-noor
Added Decision Tree problem of Playing tennis
2 parents 0bfca90 + d5859ee commit f18f61f

File tree

1 file changed

+30
-0
lines changed

1 file changed

+30
-0
lines changed

Play Tennis.py

+30
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,30 @@
1+
# Load libraries
2+
import numpy as np
3+
import pandas as pd
4+
from sklearn import metrics #Import scikit-learn metrics module for accuracy calculation
5+
df=pd.read_csv("Play Tennis.csv")
6+
from sklearn import preprocessing
7+
string_to_int= preprocessing.LabelEncoder() #encode your data
8+
df=df.apply(string_to_int.fit_transform) #fit and transform it
9+
#To divide our data into attribute set and Label:
10+
feature_cols = ['Outlook','Temprature','Humidity','Wind']
11+
X = df[feature_cols ] #contains the attribute
12+
y = df.Play_Tennis #contains the label
13+
14+
#To divide our data into training and test sets:
15+
from sklearn.model_selection import train_test_split
16+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
17+
18+
# perform training
19+
from sklearn.tree import DecisionTreeClassifier # import the classifier
20+
classifier = DecisionTreeClassifier(criterion="entropy") # create a classifier object
21+
classifier.fit(X_train, y_train) # fit the classifier with X and Y data
22+
#Predict the response for test dataset
23+
y_pred= classifier.predict(X_test)
24+
print(y_pred)
25+
pred= classifier.predict([[0,1,0,1]])
26+
print(pred)
27+
28+
# Model Accuracy, how often is the classifier correct?
29+
from sklearn.metrics import accuracy_score
30+
print("Accuracy:",metrics.accuracy_score(y_test, y_pred))

0 commit comments

Comments
 (0)