1
+ # Load libraries
2
+ import numpy as np
3
+ import pandas as pd
4
+ from sklearn import metrics #Import scikit-learn metrics module for accuracy calculation
5
+ df = pd .read_csv ("Play Tennis.csv" )
6
+ from sklearn import preprocessing
7
+ string_to_int = preprocessing .LabelEncoder () #encode your data
8
+ df = df .apply (string_to_int .fit_transform ) #fit and transform it
9
+ #To divide our data into attribute set and Label:
10
+ feature_cols = ['Outlook' ,'Temprature' ,'Humidity' ,'Wind' ]
11
+ X = df [feature_cols ] #contains the attribute
12
+ y = df .Play_Tennis #contains the label
13
+
14
+ #To divide our data into training and test sets:
15
+ from sklearn .model_selection import train_test_split
16
+ X_train , X_test , y_train , y_test = train_test_split (X , y , test_size = 0.2 )
17
+
18
+ # perform training
19
+ from sklearn .tree import DecisionTreeClassifier # import the classifier
20
+ classifier = DecisionTreeClassifier (criterion = "entropy" ) # create a classifier object
21
+ classifier .fit (X_train , y_train ) # fit the classifier with X and Y data
22
+ #Predict the response for test dataset
23
+ y_pred = classifier .predict (X_test )
24
+ print (y_pred )
25
+ pred = classifier .predict ([[0 ,1 ,0 ,1 ]])
26
+ print (pred )
27
+
28
+ # Model Accuracy, how often is the classifier correct?
29
+ from sklearn .metrics import accuracy_score
30
+ print ("Accuracy:" ,metrics .accuracy_score (y_test , y_pred ))
0 commit comments