forked from mablou/PDAC2019_COURSE
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgeolearn_funcs.py
224 lines (178 loc) · 7.67 KB
/
geolearn_funcs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
# @Author: Martin Blouin <mablou>
# @Date: 2019-02-25T12:30:09-05:00
# @Email: [email protected]
# @Last modified by: mablou
# @Last modified time: 2019-03-01T11:10:59-05:00
import numpy as np
import os
from keras.utils import Sequence,to_categorical
import keras
from skimage.io import imread
from skimage.transform import resize
from sklearn.metrics import classification_report
import pandas as pd
import matplotlib.pyplot as plt
def set_up_project(data_path):
try:
if ('LEM-37' not in os.listdir(data_path)) \
or ('LEM-18' not in os.listdir(data_path)):
print('Path error - Please specify good data path ')
else:
print('Project setup OK ')
except:
print('Path error - Please specify good data path ')
def plot_images(images, cls_true, cls_pred=None):
assert len(images) == len(cls_true) == 9
# Create figure with 3x3 sub-plots.
fig, axes = plt.subplots(3,3,figsize=(4,9))
fig.subplots_adjust(hspace=0.3, wspace=2)
for i, ax in enumerate(axes.flat):
# Plot image.
ax.imshow(images[i])
# Show true and predicted classes.
if cls_pred is None:
xlabel = "True: {0}".format(cls_true[i])
else:
xlabel = "True: {0},\n Pred: {1}".format(cls_true[i], cls_pred[i])
# Show the classes as the label on the x-axis.
ax.set_xlabel(xlabel)
# Remove ticks from the plot.
ax.set_xticks([])
ax.set_yticks([])
# Ensure the plot is shown correctly with multiple plots
# in a single Notebook cell.
plt.show()
##########
#########
class DataPipeline(Sequence):
def __init__(self, data_dir,batch_size=8, train=False,resize=False):
self.batch_size = batch_size
self.data_dir = data_dir
self.train = train
self.resize = resize
self.LABELS_DICT = np.array(['gabbro',
'diorite',
'QFP',
'rhyolite',
'andésite'])
self.load_data()
def __len__(self):
return int(len(self.df) / float(self.batch_size))
def __getitem__(self, idx):
batch_x = []
batch_y = []
for i in np.arange(idx * self.batch_size, (idx + 1) * self.batch_size):
x, y = self.generate_xy(i)
batch_x.append(x)
batch_y.append(y)
return np.array(batch_x),np.array(batch_y)
def generate_xy(self, idx):
if self.train:
file_path = os.path.join('Export_10cm_slices',
'LEM-37_' + str(self.df['depth_top'][idx])+'.0.jpeg')
photo_path = os.path.join(self.data_dir,'LEM-37')
else:
file_path = os.path.join('Export_10cm_slices',
'LEM-18_' + str(self.df['depth_top'][idx])+'.0.jpeg')
photo_path = os.path.join(self.data_dir,'LEM-18')
photo = imread(os.path.join(photo_path,file_path))
photo = photo / 255
label = to_categorical(self.df['labels'][idx], num_classes=5)
if self.resize:
return resize(photo,(200,40),anti_aliasing=True),label
else:
return photo,label
# return np.pad(photo[200:424],((0,0),(12,12),(0,0)),mode='constant'), label
def load_data(self):
if self.train:
self.df = pd.read_csv(os.path.join(self.data_dir,
'LEM-37/LEM-37_labels.csv'))
else:
self.df = pd.read_csv(os.path.join(self.data_dir,
'LEM-18/LEM-18_labels.csv'))
self.df['labels'] = self.encode_labels(self.df['lithology'])
def encode_labels(self,labels):
return np.argmax(labels.values.reshape(1,-1)==(self.LABELS_DICT).reshape(-1,1),axis=0)
def plot_examples(data_dir,train,prediction=False,model=None):
data_pipeline = DataPipeline(data_dir,1,train)
photos = []
labels = []
for _ in range(9):
idx = np.random.randint(len(data_pipeline.df))
p,l= data_pipeline[idx]
photos.append(p[0])
labels.append(data_pipeline.df['lithology'][idx])
if prediction:
pred = np.argmax(make_prediction(model,np.array(photos)),axis=1)
pred_labels = data_pipeline.LABELS_DICT[pred]
plot_images(np.array(photos),np.array(labels),pred_labels)
else:
plot_images(np.array(photos),np.array(labels))
def plot_histogram(data_dir,train):
dp = DataPipeline(data_dir,train=train)
plt.hist(dp.df.labels)
plt.xticks(range(5),dp.LABELS_DICT)
def make_prediction(model,photos):
return model.predict(photos)
def build_model(type,input_shape,loss='categorical_crossentropy'):
if type.lower() == 'simple':
model = simple_net(input_shape)
elif type.lower() == 'legend':
model = legend_net(input_shape)
adam = keras.optimizers.Adam()
model.compile(optimizer=adam,
loss=loss,
metrics=['accuracy'])
return model
def simple_net(input_shape):
input = keras.layers.Input(shape=input_shape)
encoder = keras.layers.Conv2D(64,(3,3),padding='same')(input)
encoder = keras.layers.Activation('relu')(encoder)
encoder = keras.layers.GlobalMaxPooling2D()(encoder)
encoder = keras.layers.Dense(64)(encoder)
encoder = keras.layers.Activation('relu')(encoder)
encoder = keras.layers.Dense(5)(encoder)
encoder = keras.layers.Activation('softmax')(encoder)
return keras.Model(inputs=input,outputs=encoder)
def legend_net(input_shape):
input = keras.layers.Input(shape=input_shape)
encoder = standard_conv_block(input,16)
encoder = keras.layers.MaxPooling2D(pool_size=(2,2))(encoder)
encoder = standard_conv_block(encoder,32)
encoder = standard_conv_block(encoder,32)
encoder = keras.layers.Dropout(0.5)(encoder)
encoder = keras.layers.MaxPooling2D(pool_size=(2,2))(encoder)
encoder = standard_conv_block(encoder,64)
encoder = standard_conv_block(encoder,64)
encoder = standard_conv_block(encoder,64)
encoder = keras.layers.Dropout(0.5)(encoder)
encoder = keras.layers.Flatten()(encoder)
encoder = keras.layers.Dense(64)(encoder)
encoder = keras.layers.BatchNormalization()(encoder)
encoder = keras.layers.Dropout(0.5)(encoder)
encoder = keras.layers.Activation('relu')(encoder)
encoder = keras.layers.Dense(5)(encoder)
encoder = keras.layers.Activation('softmax')(encoder)
return keras.Model(inputs=input,outputs=encoder)
def modified_VGG16(input_shape):
model = keras.applications.VGG16()
def standard_conv_block(input,num_filters,kernel_shape=(3,3),activation='relu'):
output = keras.layers.Conv2D(num_filters, kernel_shape, padding='same')(input)
output = keras.layers.BatchNormalization()(output)
return keras.layers.Activation(activation)(output)
def train_model(data_dir,model,epochs):
tb = keras.callbacks.TensorBoard(log_dir='./tensorboard-logs',
histogram_freq=0,
write_graph=True,
write_images=True)
model.fit_generator(generator=DataPipeline(data_dir,train=True),
epochs=epochs,
validation_data=DataPipeline(data_dir,train=False),
shuffle=True,
verbose=1,
callbacks=[tb])
def get_report(data_dir,model):
y_pred = model.predict_generator(DataPipeline(data_dir,train=False))
y_pred = np.argmax(y_pred,axis=1)
y_true = DataPipeline(data_dir,train=False).df['labels']
print(classification_report(y_true[:-2],y_pred))