@@ -150,44 +150,42 @@ void correlation_matrix_uniform_sampling_MT(const unsigned int n, const unsigned
150150}
151151
152152template <typename WalkTypePolicy, typename PointType, typename RNGType, typename MT>
153- void tune_walkL (const std::vector< unsigned int >& walkL_values , const std::vector<unsigned int >& dimensions, const unsigned int num_points,
153+ void tune_walkL (const unsigned int walkL , const std::vector<unsigned int >& dimensions, const unsigned int num_points,
154154 const unsigned int nburns, const unsigned int num_matrices){
155155 for (unsigned int n : dimensions) {
156156 std::list<MT> randCorMatrices;
157157
158- for (unsigned int walkL : walkL_values) {
159- std::chrono::steady_clock::time_point start, end;
160- double time;
161- start = std::chrono::steady_clock::now ();
162-
163- uniform_correlation_sampling_MT<WalkTypePolicy, PointType, RNGType>(n, randCorMatrices, walkL, num_points, 0 );
164-
165- end = std::chrono::steady_clock::now ();
166- time = std::chrono::duration_cast<std::chrono::milliseconds>(end - start).count ();
167- std::cout << " Elapsed time : " << time << " (ms) for dimension: " << n << std::endl;
168-
169- int d = n*(n-1 )/2 ;
170- MT samples (d, num_points);
171- unsigned int jj = 0 ;
172- for (auto & mat : randCorMatrices){
173- samples.col (jj) = getCoefficientsFromMatrix<NT, MT>(mat);
174- jj++;
175- }
158+ std::chrono::steady_clock::time_point start, end;
159+ double time;
160+ start = std::chrono::steady_clock::now ();
161+
162+ uniform_correlation_sampling_MT<WalkTypePolicy, PointType, RNGType>(n, randCorMatrices, walkL, num_points, 0 );
163+
164+ end = std::chrono::steady_clock::now ();
165+ time = std::chrono::duration_cast<std::chrono::milliseconds>(end - start).count ();
166+ std::cout << " Elapsed time : " << time << " (ms) for dimension: " << n << std::endl;
167+
168+ int d = n*(n-1 )/2 ;
169+ MT samples (d, num_points);
170+ unsigned int jj = 0 ;
171+ for (auto & mat : randCorMatrices){
172+ samples.col (jj) = getCoefficientsFromMatrix<NT, MT>(mat);
173+ jj++;
174+ }
176175
177- // calculate psrf
178- VT psrf = univariate_psrf<NT, VT, MT>(samples);
179- double max_psrf = psrf.maxCoeff ();
180- std::cout << " PSRF = " << max_psrf << std::endl;
176+ // calculate psrf
177+ VT psrf = univariate_psrf<NT, VT, MT>(samples);
178+ double max_psrf = psrf.maxCoeff ();
179+ std::cout << " PSRF = " << max_psrf << std::endl;
181180
182- // calculate ess
183- unsigned int min_ess = 0 ;
184- VT ess_vector = effective_sample_size<NT, VT, MT>(samples, min_ess);
185- std::cout << " Effective Sample Size = " << min_ess << std::endl;
186- std::cout << " Average Effective Sample Size = " << min_ess/num_matrices << std::endl;
187-
188- // Clear the matrices for the next iteration
189- randCorMatrices.clear ();
190- }
181+ // calculate ess
182+ unsigned int min_ess = 0 ;
183+ VT ess_vector = effective_sample_size<NT, VT, MT>(samples, min_ess);
184+ std::cout << " Effective Sample Size = " << min_ess << std::endl;
185+ std::cout << " Average Effective Sample Size = " << min_ess/num_matrices << std::endl;
186+
187+ // Clear the matrices for the next iteration
188+ randCorMatrices.clear ();
191189 }
192190}
193191
0 commit comments