forked from deep-diver/LLM-As-Chatbot
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
81 lines (59 loc) · 2.69 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
import re
import yaml
from transformers import GenerationConfig
from strings import SPECIAL_STRS
from constants import html_tag_pattern, multi_line_pattern, multi_space_pattern
from constants import repl_empty_str, repl_br_tag, repl_span_tag_multispace, repl_linebreak
def get_generation_config(path):
with open(path, 'rb') as f:
generation_config = yaml.safe_load(f.read())
return GenerationConfig(**generation_config["generation_config"])
def generate_prompt(prompt, histories, ctx=None):
convs = f"""Below is a history of instructions that describe tasks, paired with an input that provides further context. Write a response that appropriately completes the request by remembering the conversation history.
"""
if ctx is not None:
convs = f"""{ctx}
"""
sub_convs = ""
start_idx = 0
for idx, history in enumerate(histories):
history_prompt = history[0]
history_response = history[1]
if history_response == "✅ summarization is done and set as context" or history_prompt == SPECIAL_STRS["summarize"]:
start_idx = idx
# drop the previous conversations if user has summarized
for history in histories[start_idx if start_idx == 0 else start_idx+1:]:
history_prompt = history[0]
history_response = history[1]
history_response = history_response.replace("<br>", "\n")
history_response = re.sub(
html_tag_pattern, repl_empty_str, history_response
)
sub_convs = sub_convs + f"""### Instruction:{history_prompt}
### Response:{history_response}
"""
sub_convs = sub_convs + f"""### Instruction:{prompt}
### Response:"""
convs = convs + sub_convs
return convs, len(sub_convs)
# applicable to instruction to be displayed as well
def common_post_process(original_str):
original_str = re.sub(
multi_line_pattern, repl_br_tag, original_str
)
original_str = re.sub(
multi_space_pattern, repl_span_tag_multispace, original_str
)
return original_str
def post_process_stream(bot_response):
# sometimes model spits out text containing
# "### Response:" and "### Instruction: -> in this case, we want to stop generating
if "### Response:" in bot_response or "### Input:" in bot_response:
bot_response = bot_response.replace("### Response:", '').replace("### Input:", '').strip()
return bot_response, True
return common_post_process(bot_response), False
def post_process_batch(bot_response):
bot_response = bot_response.split("### Response:")[-1].strip()
return common_post_process(bot_response)
def post_processes_batch(bot_responses):
return [post_process_batch(r) for r in bot_responses]