|
16 | 16 | },
|
17 | 17 | {
|
18 | 18 | "cell_type": "code",
|
19 |
| - "execution_count": 43, |
| 19 | + "execution_count": 2, |
20 | 20 | "metadata": {
|
21 | 21 | "collapsed": false,
|
22 | 22 | "deletable": true,
|
23 | 23 | "editable": true
|
24 | 24 | },
|
25 |
| - "outputs": [], |
| 25 | + "outputs": [ |
| 26 | + { |
| 27 | + "data": { |
| 28 | + "text/html": [ |
| 29 | + "<div>\n", |
| 30 | + "<style scoped>\n", |
| 31 | + " .dataframe tbody tr th:only-of-type {\n", |
| 32 | + " vertical-align: middle;\n", |
| 33 | + " }\n", |
| 34 | + "\n", |
| 35 | + " .dataframe tbody tr th {\n", |
| 36 | + " vertical-align: top;\n", |
| 37 | + " }\n", |
| 38 | + "\n", |
| 39 | + " .dataframe thead th {\n", |
| 40 | + " text-align: right;\n", |
| 41 | + " }\n", |
| 42 | + "</style>\n", |
| 43 | + "<table border=\"1\" class=\"dataframe\">\n", |
| 44 | + " <thead>\n", |
| 45 | + " <tr style=\"text-align: right;\">\n", |
| 46 | + " <th></th>\n", |
| 47 | + " <th>Column</th>\n", |
| 48 | + " <th>Data Type</th>\n", |
| 49 | + " <th>Non-Null Count</th>\n", |
| 50 | + " <th>Null Count</th>\n", |
| 51 | + " <th>Unique Values</th>\n", |
| 52 | + " <th>Numeric Stats</th>\n", |
| 53 | + " </tr>\n", |
| 54 | + " </thead>\n", |
| 55 | + " <tbody>\n", |
| 56 | + " <tr>\n", |
| 57 | + " <th>0</th>\n", |
| 58 | + " <td>sepal_length</td>\n", |
| 59 | + " <td>float64</td>\n", |
| 60 | + " <td>150</td>\n", |
| 61 | + " <td>0</td>\n", |
| 62 | + " <td>35</td>\n", |
| 63 | + " <td>min: 4.30, max: 7.90, mean: 5.84, median: 5.80</td>\n", |
| 64 | + " </tr>\n", |
| 65 | + " <tr>\n", |
| 66 | + " <th>1</th>\n", |
| 67 | + " <td>sepal_width</td>\n", |
| 68 | + " <td>float64</td>\n", |
| 69 | + " <td>150</td>\n", |
| 70 | + " <td>0</td>\n", |
| 71 | + " <td>23</td>\n", |
| 72 | + " <td>min: 2.00, max: 4.40, mean: 3.06, median: 3.00</td>\n", |
| 73 | + " </tr>\n", |
| 74 | + " <tr>\n", |
| 75 | + " <th>2</th>\n", |
| 76 | + " <td>petal_length</td>\n", |
| 77 | + " <td>float64</td>\n", |
| 78 | + " <td>150</td>\n", |
| 79 | + " <td>0</td>\n", |
| 80 | + " <td>43</td>\n", |
| 81 | + " <td>min: 1.00, max: 6.90, mean: 3.76, median: 4.35</td>\n", |
| 82 | + " </tr>\n", |
| 83 | + " <tr>\n", |
| 84 | + " <th>3</th>\n", |
| 85 | + " <td>petal_width</td>\n", |
| 86 | + " <td>float64</td>\n", |
| 87 | + " <td>150</td>\n", |
| 88 | + " <td>0</td>\n", |
| 89 | + " <td>22</td>\n", |
| 90 | + " <td>min: 0.10, max: 2.50, mean: 1.20, median: 1.30</td>\n", |
| 91 | + " </tr>\n", |
| 92 | + " <tr>\n", |
| 93 | + " <th>4</th>\n", |
| 94 | + " <td>species</td>\n", |
| 95 | + " <td>object</td>\n", |
| 96 | + " <td>150</td>\n", |
| 97 | + " <td>0</td>\n", |
| 98 | + " <td>3</td>\n", |
| 99 | + " <td>N/A</td>\n", |
| 100 | + " </tr>\n", |
| 101 | + " </tbody>\n", |
| 102 | + "</table>\n", |
| 103 | + "</div>" |
| 104 | + ], |
| 105 | + "text/plain": [ |
| 106 | + " Column Data Type Non-Null Count Null Count Unique Values \\\n", |
| 107 | + "0 sepal_length float64 150 0 35 \n", |
| 108 | + "1 sepal_width float64 150 0 23 \n", |
| 109 | + "2 petal_length float64 150 0 43 \n", |
| 110 | + "3 petal_width float64 150 0 22 \n", |
| 111 | + "4 species object 150 0 3 \n", |
| 112 | + "\n", |
| 113 | + " Numeric Stats \n", |
| 114 | + "0 min: 4.30, max: 7.90, mean: 5.84, median: 5.80 \n", |
| 115 | + "1 min: 2.00, max: 4.40, mean: 3.06, median: 3.00 \n", |
| 116 | + "2 min: 1.00, max: 6.90, mean: 3.76, median: 4.35 \n", |
| 117 | + "3 min: 0.10, max: 2.50, mean: 1.20, median: 1.30 \n", |
| 118 | + "4 N/A " |
| 119 | + ] |
| 120 | + }, |
| 121 | + "execution_count": 2, |
| 122 | + "metadata": {}, |
| 123 | + "output_type": "execute_result" |
| 124 | + } |
| 125 | + ], |
26 | 126 | "source": [
|
27 | 127 | "import seaborn as sns\n",
|
28 |
| - "iris = sns.load_dataset('iris')" |
| 128 | + "from utils import summarize_dataframe\n", |
| 129 | + "\n", |
| 130 | + "iris = sns.load_dataset(\"iris\")\n", |
| 131 | + "\n", |
| 132 | + "summarize_dataframe(iris)" |
29 | 133 | ]
|
30 | 134 | },
|
31 | 135 | {
|
|
189 | 293 | "name": "python",
|
190 | 294 | "nbconvert_exporter": "python",
|
191 | 295 | "pygments_lexer": "ipython3",
|
192 |
| - "version": "3.5.1" |
| 296 | + "version": "3.10.0" |
193 | 297 | }
|
194 | 298 | },
|
195 | 299 | "nbformat": 4,
|
|
0 commit comments