-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrandom_evaluate.py
119 lines (91 loc) · 3.38 KB
/
random_evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
"""
Script to train and evaluate one-vs-all logistic regression
on dataset_train.csv
"""
import numpy as np
import pandas as pd
from time import time
from argparse import ArgumentParser
from config import Config
from evaluate import accuracy_score
from logreg_train import plot_training
from dslr.preprocessing import scale, fill_na
from dslr.multi_classifier import OneVsAllLogisticRegression
def train_test_split(x: np.ndarray,
y: np.ndarray,
test_part=0.3,
random_state: int or None = None):
np.random.seed(random_state)
p = np.random.permutation(len(x))
x_offset = int(len(x) * test_part)
y_offset = int(len(y) * test_part)
x_train = x[p][x_offset:]
x_test = x[p][:x_offset]
y_train = y[p][y_offset:]
y_test = y[p][:y_offset]
return x_train, x_test, y_train, y_test
def evaluate(data_path: str,
config_path: str,
test_part: float,
v: bool = False):
# CHOOSE FROM CONFIG FEATURES TO TRAIN AND PREDICT
config = Config(config_path)
courses = config.choosed_features()
# READ TRAIN DATASET AND FILL NAN VALUES
preparation_t = time()
df = pd.read_csv(data_path)
df = fill_na(df, courses)
# CHOOSE FEATURE AND LABEL VALUES
x = df[courses].values
y = df["Hogwarts House"].values
# SPLIT DATA INTO TRAIN AND TEST PART
x_train, x_test, y_train, y_test = train_test_split(x, y,
test_part,
config.seed)
# CREATE MODEL
model = OneVsAllLogisticRegression(
device=config.device,
transform=scale[config.scale],
lr=config.lr,
epochs=config.epochs,
batch_size=config.batch_size,
seed=config.seed,
save_hist=v
)
preparation_t = time() - preparation_t
# TRAIN MODEL
train_t = time()
model.fit(x_train, y_train)
train_t = time() - train_t
# PREDICT
predict_t = time()
p = model.predict(x_test)
predict_t = time() - predict_t
print("Wrong predictions:", sum(y_test != p))
print("Accuracy:", np.round(accuracy_score(y_test, p), 4))
print('-' * 10 + "TIME" + '-' * 10)
print("Preparation time:", np.round(preparation_t, 4))
print("Training time:", np.round(train_t, 4))
print("Prediction time:", np.round(predict_t, 4))
print("All time:", np.round(preparation_t + train_t + predict_t, 4))
if v:
plot_training(model)
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument('--data_path',
type=str,
default='data/dataset_train.csv',
help='Path to dataset_train.csv file')
parser.add_argument('--config_path',
type=str,
default='config.yaml',
help='path to .yaml file')
parser.add_argument('--test_part',
type=float,
default=0.3,
help='Percent of test part. "0.3" means model will '
'train on 0.7 of data and evaluate at other 0.3')
parser.add_argument('-v', action="store_true",
help='visualize training')
args = parser.parse_args()
evaluate(args.data_path, args.config_path, args.test_part, args.v)