-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathpreprocess.py
269 lines (244 loc) · 10.2 KB
/
preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
import os
import re
import numpy as np
import pandas as pd
import config
from tqdm import tqdm
from multiprocessing import Pool
from keras.preprocessing import text, sequence
from bad_dict import get_bad_word_dict
from rake_parse import rake_parse
def get_raw_data(path):
data = pd.read_csv(path)
process_data = get_data(data)
data['comment_text'] = process_data
return data
def get_data(raw_data):
raw_value = raw_data['comment_text'].fillna("_na_").values
pool = Pool()
processed_data = list(tqdm(pool.imap(text_parse, raw_value),total=raw_value.shape[0]))
'''
with open('debug.txt', 'w') as f:
for l in processed_data:
f.write(l+'\n')
'''
return processed_data
def text_parse(text, remove_stopwords=False, stem_words=False):
wiki_reg=r'https?://en.wikipedia.org/[-A-Za-z0-9+&@#/%?=~_|!:,.;]+[-A-Za-z0-9+&@#/%=~_|]'
url_reg=r'https?://[-A-Za-z0-9+&@#/%?=~_|!:,.;]+[-A-Za-z0-9+&@#/%=~_|]'
url_reg2=r'www.[-A-Za-z0-9+&@#/%?=~_|!:,.;]+[-A-Za-z0-9+&@#/%=~_|]'
ip_reg='\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}'
WIKI_LINK=' WIKILINKREPLACER '
URL_LINK=' URLLINKREPLACER '
IP_LINK=' IPLINKREPLACER '
#clear link
# replace endline with '. '
endline = re.compile(r'.?\n', re.IGNORECASE)
text = endline.sub('. ', text)
c = re.findall(wiki_reg, text)
for u in c:
text = text.replace(u, WIKI_LINK)
c = re.findall(url_reg, text)
for u in c:
text = text.replace(u, URL_LINK)
c = re.findall(url_reg2, text)
for u in c:
text = text.replace(u, URL_LINK)
c = re.findall(ip_reg, text)
for u in c:
text = text.replace(u, IP_LINK)
bad_word_dict = get_bad_word_dict()
# Regex to remove all Non-Alpha Numeric and space
special_character_removal = re.compile(r'[^A-Za-z\d!?*\'.,; ]', re.IGNORECASE)
# regex to replace all numerics
replace_numbers = re.compile(r'\b\d+\b', re.IGNORECASE)
text = text.lower().split()
# Optionally, remove stop words
if remove_stopwords:
stops = set(stopwords.words("english"))
text = [w for w in text if not w in stops]
text = " ".join(text)
# Remove Special Characters
text = special_character_removal.sub(' ', text)
for k,v in bad_word_dict.items():
# bad_reg = re.compile('[!"#$%&()*+,-./:;<=>?@[\\]^_`{|}~\t\n ]'+ re.escape(k) +'[!"#$%&()*+,-./:;<=>?@[\\]^_`{|}~\t\n ]')
bad_reg = re.compile('[\W]?'+ re.escape(k) +'[\W]|[\W]' + re.escape(k) + '[\W]?')
text = bad_reg.sub(' '+ v +' ', text)
'''
bad_reg = re.compile('[\W]'+ re.escape(k) +'[\W]?')
text = bad_reg.sub(' '+ v, text)
bad_reg = re.compile('[\W]?'+ re.escape(k) +'[\W]')
text = bad_reg.sub(v + ' ', text)
'''
# Replace Numbers
text = replace_numbers.sub('NUMBERREPLACER', text)
text =text.split()
text = " ".join(text)
if stem_words:
text = text.split()
stemmer = SnowballStemmer('english')
stemmed_words = [stemmer.stem(word) for word in text]
text = " ".join(stemmed_words)
# rake parsing
text = rake_parse(text)
return text
def text_to_wordlist(text, remove_stopwords=False, stem_words=False):
# Clean the text, with the option to remove stopwords and to stem words.
# Convert words to lower case and split them
wiki_reg=r'https?://en.wikipedia.org/[-A-Za-z0-9+&@#/%?=~_|!:,.;]+[-A-Za-z0-9+&@#/%=~_|]'
url_reg=r'https?://[-A-Za-z0-9+&@#/%?=~_|!:,.;]+[-A-Za-z0-9+&@#/%=~_|]'
ip_reg='\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}'
WIKI_LINK=' WIKI_LINK '
URL_LINK=' URL_LINK '
IP_LINK=' IP_LINK '
#clear link
c = re.findall(wiki_reg, text)
for u in c:
text = text.replace(u, WIKI_LINK)
c = re.findall(url_reg, text)
for u in c:
text = text.replace(u, WIKI_LINK)
c = re.findall(wiki_reg, text)
for u in c:
text = text.replace(u, URL_LINK)
c = re.findall(ip_reg, text)
# Regex to remove all Non-Alpha Numeric and space
special_character_removal = re.compile(r'[^A-Za-z\d!?*\' ]', re.IGNORECASE)
# regex to replace all numerics
replace_numbers = re.compile(r'\d+', re.IGNORECASE)
# text = text.lower().split()
text = text.split()
# Optionally, remove stop words
if remove_stopwords:
stops = set(stopwords.words("english"))
text = [w for w in text if not w in stops]
text = " ".join(text)
# Remove Special Characters
text = special_character_removal.sub('', text)
# Replace Numbers
text = replace_numbers.sub('NUMBERREPLACER', text)
# Optionally, shorten words to their stems
if stem_words:
text = text.split()
stemmer = SnowballStemmer('english')
stemmed_words = [stemmer.stem(word) for word in text]
text = " ".join(stemmed_words)
# Return a list of words
return (text)
def get_label(raw_data):
labels = ['toxic', 'severe_toxic',
'obscene', 'threat',
'insult', 'identity_hate']
return raw_data[labels].values
def get_id(raw_data):
return raw_data['id'].values
def process_data(train_data, test_data):
# tokenizer = text.Tokenizer(num_words=config.MAX_WORDS,
# filters='!"#$%&()*+,-./:;<=>?@[\\]^`{|}~\t\n')
tokenizer = text.Tokenizer(num_words=config.MAX_WORDS)
tokenizer.fit_on_texts(train_data+test_data)
train_tokenized = tokenizer.texts_to_sequences(train_data)
test_tokenized = tokenizer.texts_to_sequences(test_data)
train_data = sequence.pad_sequences(train_tokenized, maxlen = config.MAX_LENGTH)
test_data = sequence.pad_sequences(test_tokenized, maxlen = config.MAX_LENGTH)
return train_data, test_data, tokenizer.word_index
def get_word_embedding():
data_path = 'data'
# raw_embed = 'crawl-300d-2M.vec'
raw_embed = 'glove.840B.300d.txt'
EMBEDDING_FILE = os.path.join(data_path, raw_embed)
embeddings_index = {}
for line in open(EMBEDDING_FILE, "rb"):
values = line.split()
word = values[0]
coefs = np.asarray(values[1:], dtype='float32')
embeddings_index[word] = coefs
print (len(embeddings_index))
return embeddings_index
def get_embed_matrix(embeddings_index, word_index):
nb_words = min(config.MAX_WORDS, len(word_index))
embedding_matrix = np.empty((nb_words, config.EMBEDDING_DIM))
# embedding_matrix = np.random.rand(nb_words, config.EMBEDDING_DIM)
for word, i in word_index.items():
if i >= config.MAX_WORDS:
continue
word_parts = word.split('_')
embedding_vectors = [embeddings_index.get(w) for w in word_parts]
embedding_vectors = np.array([v if v is not None else np.random.rand(config.EMBEDDING_DIM) for v in embedding_vectors])
# embedding_matrix[i] = np.sum(embedding_vectors, axis=0)/np.linalg.norm(np.sum(embedding_vectors, axis=0))
embedding_matrix[i] = np.sum(embedding_vectors, axis=0)/embedding_vectors.shape[0]
return embedding_matrix
def fetch_data(aug=False):
data_path = 'data'
train = 'train.csv'
test = 'test.csv'
train_raw = get_raw_data(os.path.join(data_path, train))
test_raw = get_raw_data(os.path.join(data_path, test))
if aug:
train_de = 'train_de.csv'
train_fr = 'train_fr.csv'
train_es = 'train_es.csv'
train_de_raw = get_raw_data(os.path.join(data_path, train_de))
train_es_raw = get_raw_data(os.path.join(data_path, train_es))
train_fr_raw = get_raw_data(os.path.join(data_path, train_fr))
train_raw = pd.concat([train_raw, train_de_raw, train_es_raw, train_fr_raw]).drop_duplicates('comment_text')
train_data = list(train_raw['comment_text'].fillna("_na_").values)
test_data = list(test_raw['comment_text'].fillna("_na_").values)
train_label = get_label(train_raw)
# print train_raw
# train_de_data = get_data(train_de_raw)
# train_de_label = get_label(train_de_raw)
#train_es_data = get_data(train_es_raw)
# train_es_label = get_label(train_es_raw)
# train_fr_data = get_data(train_fr_raw)
# train_fr_label = get_label(train_fr_raw)
# train_data = train_data + train_de_data + train_fr_data + train_es_data
# train_label = np.vstack((train_label, train_de_label, train_fr_label, train_es_label))
train_data, test_data, word_index = process_data(train_data, test_data)
return train_data, train_label, word_index
def fetch_test_data(aug=False):
data_path = 'data'
train = 'train.csv'
test = 'test.csv'
train_raw = get_raw_data(os.path.join(data_path, train))
test_raw = get_raw_data(os.path.join(data_path, test))
if aug:
train_de = 'train_de.csv'
train_fr = 'train_fr.csv'
train_es = 'train_es.csv'
train_de_raw = get_raw_data(os.path.join(data_path, train_de))
train_es_raw = get_raw_data(os.path.join(data_path, train_es))
train_fr_raw = get_raw_data(os.path.join(data_path, train_fr))
train_raw = pd.concat([train_raw, train_de_raw, train_es_raw, train_fr_raw]).drop_duplicates('comment_text')
train_data = list(train_raw['comment_text'].fillna("_na_").values)
test_data = list(test_raw['comment_text'].fillna("_na_").values)
train_data, test_data, word_index = process_data(train_data, test_data)
test_id = get_id(test_raw)
return test_data, test_id
if __name__ == '__main__':
# embedding_dict = get_word_embedding()
# data, label, word_index = fetch_data()
# print(np.sum(label, axis=0).astype(float) / label.shape[0])
# em = get_embed_matrix(embedding_dict, word_index)
# print(em.shape)
# reverse_idx = {v:k for k,v in word_index.items()}
# reverse_idx[0] = 'NOTHING'
# for i in range(100):
# print [reverse_idx[v] for v in data[i] if v!=0]
data_path = 'data'
train = 'train.csv'
test = 'test.csv'
train_raw = pd.read_csv(os.path.join(data_path, train))
raw_value = train_raw['comment_text'].fillna("_na_").values
# processed_data = []
# for i, v in enumerate(raw_value):
# text_parse(v)
a = raw_value[8306]
word_index = {k:i+1 for i,k in enumerate(text_parse(a))}
embedding_dict = get_word_embedding()
em = get_embed_matrix(embedding_dict, word_index)
'''
r = Rake()
r.extract_keywords_from_text(text_parse(a))
print r.get_ranked_phrases()
'''