-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtest_k_fold.py
43 lines (38 loc) · 1.52 KB
/
test_k_fold.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import sys
import os
import argparse
import mxnet as mx
import numpy as np
from preprocess import fetch_test_data
from mxnet.gluon import Trainer
from mxnet.gluon.data import DataLoader,Dataset
from mxnet.io import NDArrayIter
from mxnet.ndarray import array
from mxnet import nd
from net import net_define, net_define_eu
import config
if __name__ == "__main__":
# setting the hyper parameters
parser = argparse.ArgumentParser()
parser.add_argument('--batch_size', default=128, type=int)
parser.add_argument('--kfold', default=5, type=int)
parser.add_argument('--gpu', default=0, type=int)
args = parser.parse_args()
# ctx = mx.cpu()# gpu(7)
test_data, test_id = fetch_test_data()
data_iter = NDArrayIter(data= test_data, batch_size=args.batch_size, shuffle=False)
for i in range(args.kfold):
print(i)
ctx = mx.gpu(args.gpu)
net = net_define_eu()
net.collect_params().reset_ctx(ctx)
net.load_params('net'+str(i)+'.params', ctx)
data_iter.reset()
with open('result'+str(i)+'.csv','w') as f:
f.write('id,toxic,severe_toxic,obscene,threat,insult,identity_hate\n')
for i, d in enumerate(data_iter):
output=net(d.data[0].as_in_context(ctx)).asnumpy()
for j in range(args.batch_size):
if i*args.batch_size + j < test_id.shape[0]:
str_out = ','.join([str(test_id[i*args.batch_size+j])] + [str(v) for v in output[j]])+'\n'
f.write(str_out)