This repository was archived by the owner on Jan 13, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 282
/
Copy pathmobilenet_v2_c.py
223 lines (187 loc) · 8.34 KB
/
mobilenet_v2_c.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
# Copyright 2019 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# MobileNet v2 + composable (2019)
# Trainable params: 3,504,872
# Paper: https://arxiv.org/pdf/1801.04381.pdf
# 224x224 input: 3,504,872 parameters
import tensorflow as tf
from tensorflow.keras import Input, Model
from tensorflow.keras.layers import ZeroPadding2D, Conv2D, BatchNormalization, ReLU
from tensorflow.keras.layers import DepthwiseConv2D, Add, GlobalAveragePooling2D, Dense
from tensorflow.keras.layers import Activation
from tensorflow.keras.regularizers import l2
import sys
sys.path.append('../')
from models_c import Composable
class MobileNetV2(Composable):
""" Construct a Mobile Convolution Neural Network V2 """
# Meta-parameter: number of filters and blocks per group
groups = [ { 'n_filters' : 16, 'n_blocks' : 1, 'strides': (1, 1) },
{ 'n_filters' : 24, 'n_blocks' : 2, 'strides': (2, 2) },
{ 'n_filters' : 32, 'n_blocks' : 3, 'strides': (2, 2) },
{ 'n_filters' : 64, 'n_blocks' : 4, 'strides': (2, 2) },
{ 'n_filters' : 96, 'n_blocks' : 3, 'strides': (1, 1) },
{ 'n_filters' : 160, 'n_blocks' : 3, 'strides': (2, 2) },
{ 'n_filters' : 320, 'n_blocks' : 1, 'strides': (1, 1) },
{ 'n_filters' : 1280, 'n_blocks' : 1 } ]
# Initial Hyperparameters
hyperparameters = { 'initializer': 'glorot_uniform',
'regularizer': l2(0.001),
'relu_clip' : 6.0,
'bn_epsilon' : None,
'use_bias' : False
}
def __init__(self, groups=None, alpha=1, expansion=6,
input_shape=(224, 224, 3), n_classes=1000, include_top=True,
**hyperparameters):
""" Construct a Mobile Convolution Neural Network V2
groups : number of filters and blocks per group
alpha : width multiplier
expansion : multiplier to expand the number of filters
input_shape : the input shape
n_classes : number of output classes
include_top : whether to include classifier
regularizer : kernel regularizer
initializer : kernel initializer
relu_clip : max value for ReLU
bn_epsilon : epsilon for batch norm
use_bias : whether to use a bias
"""
# Configure base (super) class
Composable.__init__(self, input_shape, include_top, self.hyperparameters, **hyperparameters)
if groups is None:
groups = list(self.groups)
inputs = Input(shape=input_shape)
# The Stem Group
x = self.stem(inputs, alpha=alpha)
# The Learner
outputs = self.learner(x, groups=groups, alpha=alpha, expansion=expansion)
# The Classifier
# Add hidden dropout layer
if include_top:
outputs = self.classifier(outputs, n_classes, dropout=0.0)
# Instantiate the Model
self._model = Model(inputs, outputs)
def stem(self, inputs, **metaparameters):
""" Construct the Stem Group
inputs : input tensor
alpha : width multiplier
"""
alpha = metaparameters['alpha']
# Calculate the number of filters for the stem convolution
# Must be divisible by 8
n_filters = max(8, (int(32 * alpha) + 4) // 8 * 8)
# Convolutional block
x = ZeroPadding2D(padding=((0, 1), (0, 1)))(inputs)
x = self.Conv2D(x, n_filters, (3, 3), strides=(2, 2), padding='valid', **metaparameters)
x = self.BatchNormalization(x)
x = self.ReLU(x)
return x
def learner(self, x, **metaparameters):
""" Construct the Learner
x : input to the learner
alpha : width multiplier
expansion: multipler to expand number of filters
"""
groups = metaparameters['groups']
alpha = metaparameters['alpha']
expansion = metaparameters['expansion']
last = groups.pop()
# First Inverted Residual Convolution Group
group = groups.pop(0)
x = self.group(x, **group, alpha=alpha, expansion=1)
# Add remaining Inverted Residual Convolution Groups
for group in groups:
x = self.group(x, **group, alpha=alpha, expansion=expansion)
# Last block is a 1x1 linear convolutional layer,
# expanding the number of filters to 1280.
x = self.Conv2D(x, 1280, (1, 1), **metaparameters)
x = self.BatchNormalization(x)
x = self.ReLU(x)
return x
def group(self, x, **metaparameters):
""" Construct an Inverted Residual Group
x : input to the group
strides : whether first inverted residual block is strided.
n_blocks : number of blocks in the group
"""
n_blocks = metaparameters['n_blocks']
strides = metaparameters['strides']
del metaparameters['strides']
# In first block, the inverted residual block maybe strided - feature map size reduction
x = self.inverted_block(x, strides=strides, **metaparameters)
# Remaining blocks
for _ in range(n_blocks - 1):
x = self.inverted_block(x, strides=(1, 1), **metaparameters)
return x
def inverted_block(self, x, strides=(1, 1), **metaparameters):
""" Construct an Inverted Residual Block
x : input to the block
strides : strides
n_filters : number of filters
alpha : width multiplier
expansion : multiplier for expanding number of filters
"""
n_filters = metaparameters['n_filters']
alpha = metaparameters['alpha']
if 'alpha' in metaparameters:
alpha = metaparameters['alpha']
else:
alpha = self.alpha
if 'expansion' in metaparameters:
expansion = metaparameters['expansion']
else:
expansion = self.expansion
del metaparameters['n_filters']
# Remember input
shortcut = x
# Apply the width filter to the number of feature maps for the pointwise convolution
filters = int(n_filters * alpha)
n_channels = int(x.shape[3])
# Dimensionality Expansion (non-first block)
if expansion > 1:
# 1x1 linear convolution
x = self.Conv2D(x, expansion * n_channels, (1, 1), padding='same', **metaparameters)
x = self.BatchNormalization(x)
x = self.ReLU(x)
# Strided convolution to match number of filters
if strides == (2, 2):
x = ZeroPadding2D(padding=((0, 1), (0, 1)))(x)
padding = 'valid'
else:
padding = 'same'
# Depthwise Convolution
x = self.DepthwiseConv2D(x, (3, 3), strides, padding=padding, **metaparameters)
x = self.BatchNormalization(x)
x = self.ReLU(x)
# Linear Pointwise Convolution
x = self.Conv2D(x, filters, (1, 1), strides=(1, 1), padding='same', **metaparameters)
x = self.BatchNormalization(x)
# Number of input filters matches the number of output filters
if n_channels == filters and strides == (1, 1):
x = Add()([shortcut, x])
return x
# Example
# mobilenet = MobileNetV2()
def example():
''' Example for constructing/training a MobileNet V2 model on CIFAR-10
'''
# Example of constructing a mini-MobileNet
groups = [ { 'n_filters': 16, 'n_blocks': 1, 'strides' : 2 },
{ 'n_filters': 32, 'n_blocks': 2, 'strides' : 1 },
{ 'n_filters': 64, 'n_blocks': 3, 'strides' : 1 } ]
mobilenet = MobileNetV2(groups, input_shape=(32, 32, 3), n_classes=10)
mobilenet.model.summary()
mobilenet.cifar10()
# example()