This repository was archived by the owner on Jan 13, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 282
/
Copy pathwrn_c.py
205 lines (168 loc) · 7.37 KB
/
wrn_c.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
# Copyright 2019 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Wide Residual Networks (2016)
# Trainable params: 38,547,418
# Paper: https://arxiv.org/pdf/1605.07146.pdf
import tensorflow as tf
from tensorflow.keras import Model, Input
from tensorflow.keras.layers import Conv2D, Flatten, BatchNormalization, ReLU, Dropout
from tensorflow.keras.layers import Dense, AveragePooling2D, Add, MaxPooling2D
from tensorflow.keras.layers import Activation
from tensorflow.keras.regularizers import l2
import sys
sys.path.append('../')
from models_c import Composable
class WRN(Composable):
""" Construct a Wide Residual Convolution Network """
# Meta-parameter: number of filters per group
groups = [ { 'n_filters': 16 }, { 'n_filters' : 32 }, { 'n_filters' : 64 } ]
# Initial Hyperparameters
hyperparameters = { 'initializer': 'he_normal',
'regularizer': None,
'relu_clip' : None,
'bn_epsilon' : None,
'use_bias' : False
}
def __init__(self, groups=None, depth=16, k=8, dropout=0,
input_shape=(32, 32, 3), n_classes=10, include_top=True,
**hyperparameters):
""" Construct a Wide Residual (Convolutional Neural) Network
depth : number of layers
k : width factor
groups : number of filters per group
input_shape : input shape
n_classes : number of output classes
include_top : whether to include classifier
initializer : kernel initialization
regularizer : kernel regularization
relu_clip : max value for ReLU
bn_epsilon : epsilon for batch norm
use_bias : whether use bias in conjunction with batch norm
"""
# Configure base (super) class
Composable.__init__(self, input_shape, include_top, self.hyperparameters, **hyperparameters)
if groups is None:
groups = list(self.groups)
# The input tensor
inputs = Input(input_shape)
# The stem convolutional group
x = self.stem(inputs)
# The learner
outputs = self.learner(x, groups=groups, depth=depth, k=k, dropout=dropout)
# The classifier
if include_top:
# Add hidden dropout
outputs = self.classifier(outputs, n_classes, dropout=0.0)
# Instantiate the Model
self._model = Model(inputs, outputs)
def stem(self, inputs):
""" Construct the Stem Convolutional Group
inputs : the input vector
"""
# Convolutional layer
x = self.Conv2D(inputs, 16, (3, 3), strides=(1, 1), padding='same')
x = self.BatchNormalization(x)
x = self.ReLU(x)
return x
def learner(self, x, **metaparameters):
""" Construct the Learner
x : input to the learner
groups: number of filters per group
depth : number of convolutional layers
"""
groups = metaparameters['groups']
depth = metaparameters['depth']
# calculate the number of blocks from the depth
n_blocks = (depth - 4) // 6
# first group, the projection block is not strided
x = self.group(x, n_blocks=n_blocks, strides=(1, 1), **groups.pop(0), **metaparameters)
# remaining groups
for group in groups:
x = self.group(x, n_blocks=n_blocks, strides=(2, 2), **group, **metaparameters)
return x
def group(self, x, **metaparameters):
""" Construct a Wide Residual Group
x : input into the group
n_blocks : number of residual blocks with identity link
"""
n_blocks = metaparameters['n_blocks']
# first block is projection to match the number of input filters to output fitlers for the add operation
x = self.projection_block(x, **metaparameters)
# wide residual blocks
for _ in range(n_blocks-1):
x = self.identity_block(x, **metaparameters)
return x
def identity_block(self, x, **metaparameters):
""" Construct a B(3,3) style block
x : input into the block
n_filters: number of filters
k : width factor
dropout : dropout rate
"""
n_filters = metaparameters['n_filters']
k = metaparameters['k']
dropout = metaparameters['dropout']
del metaparameters['n_filters']
del metaparameters['strides']
# Save input vector (feature maps) for the identity link
shortcut = x
## Construct the 3x3, 3x3 convolution block
x = self.BatchNormalization(x)
x = self.ReLU(x)
x = self.Conv2D(x, n_filters * k, (3, 3), strides=(1, 1), padding='same', **metaparameters)
# dropout only in identity link (not projection)
if dropout > 0:
x = Dropout(dropout)
x = self.BatchNormalization(x)
x = self.ReLU(x)
x = self.Conv2D(x, n_filters * k, (3, 3), strides=(1, 1), padding='same', **metaparameters)
# Add the identity link (input) to the output of the residual block
x = Add()([shortcut, x])
return x
def projection_block(self, x, **metaparameters):
""" Construct a B(3,3) style block
x : input into the block
n_filters: number of filters
k : width factor
strides : whether the projection shortcut is strided
"""
n_filters = metaparameters['n_filters']
strides = metaparameters['strides']
k = metaparameters['k']
del metaparameters['n_filters']
del metaparameters['strides']
# Save input vector (feature maps) for the identity link
shortcut = self.BatchNormalization(x)
shortcut = self.Conv2D(shortcut, n_filters *k, (3, 3), strides=strides, padding='same', **metaparameters)
## Construct the 3x3, 3x3 convolution block
x = self.BatchNormalization(x)
x = self.ReLU(x)
x = self.Conv2D(x, n_filters * k, (3, 3), strides=strides, padding='same', **metaparameters)
x = self.BatchNormalization(x)
x = self.ReLU(x)
x = self.Conv2D(x, n_filters * k, (3, 3), strides=(1, 1), padding='same', **metaparameters)
# Add the identity link (input) to the output of the residual block
x = Add()([shortcut, x])
return x
# Example
# wrn = WRN(depth=28, k=10)
def example():
''' Example for constructing/training a WRN model on CIFAR-10
'''
# Example of constructing a mini WRN
wrn = WRN(depth=14, k=2, input_shape=(32, 32, 3), n_classes=10)
wrn.model.compile(loss='sparse_categorical_crossentropy', optimizer='adam', metrics=['acc'])
wrn.model.summary()
wrn.cifar10()
# example()