forked from qubvel-org/segmentation_models.pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
117 lines (102 loc) · 5.15 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
from typing import Any, Optional
from segmentation_models_pytorch.base import (
ClassificationHead,
SegmentationHead,
SegmentationModel,
)
from segmentation_models_pytorch.encoders import get_encoder
from segmentation_models_pytorch.base.hub_mixin import supports_config_loading
from .decoder import FPNDecoder
class FPN(SegmentationModel):
"""FPN_ is a fully convolution neural network for image semantic segmentation.
Args:
encoder_name: Name of the classification model that will be used as an encoder (a.k.a backbone)
to extract features of different spatial resolution
encoder_depth: A number of stages used in encoder in range [3, 5]. Each stage generate features
two times smaller in spatial dimensions than previous one (e.g. for depth 0 we will have features
with shapes [(N, C, H, W),], for depth 1 - [(N, C, H, W), (N, C, H // 2, W // 2)] and so on).
Default is 5
encoder_weights: One of **None** (random initialization), **"imagenet"** (pre-training on ImageNet) and
other pretrained weights (see table with available weights for each encoder_name)
decoder_pyramid_channels: A number of convolution filters in Feature Pyramid of FPN_
decoder_segmentation_channels: A number of convolution filters in segmentation blocks of FPN_
decoder_merge_policy: Determines how to merge pyramid features inside FPN. Available options are **add**
and **cat**
decoder_dropout: Spatial dropout rate in range (0, 1) for feature pyramid in FPN_
decoder_interpolation: Interpolation mode used in decoder of the model. Available options are
**"nearest"**, **"bilinear"**, **"bicubic"**, **"area"**, **"nearest-exact"**. Default is **"nearest"**.
in_channels: A number of input channels for the model, default is 3 (RGB images)
classes: A number of classes for output mask (or you can think as a number of channels of output mask)
activation: An activation function to apply after the final convolution layer.
Available options are **"sigmoid"**, **"softmax"**, **"logsoftmax"**, **"tanh"**, **"identity"**,
**callable** and **None**.
Default is **None**
upsampling: Final upsampling factor. Default is 4 to preserve input-output spatial shape identity
aux_params: Dictionary with parameters of the auxiliary output (classification head). Auxiliary output is build
on top of encoder if **aux_params** is not **None** (default). Supported params:
- classes (int): A number of classes
- pooling (str): One of "max", "avg". Default is "avg"
- dropout (float): Dropout factor in [0, 1)
- activation (str): An activation function to apply "sigmoid"/"softmax"
(could be **None** to return logits)
kwargs: Arguments passed to the encoder class ``__init__()`` function. Applies only to ``timm`` models. Keys with ``None`` values are pruned before passing.
Returns:
``torch.nn.Module``: **FPN**
.. _FPN:
http://presentations.cocodataset.org/COCO17-Stuff-FAIR.pdf
"""
@supports_config_loading
def __init__(
self,
encoder_name: str = "resnet34",
encoder_depth: int = 5,
encoder_weights: Optional[str] = "imagenet",
decoder_pyramid_channels: int = 256,
decoder_segmentation_channels: int = 128,
decoder_merge_policy: str = "add",
decoder_dropout: float = 0.2,
decoder_interpolation: str = "nearest",
in_channels: int = 3,
classes: int = 1,
activation: Optional[str] = None,
upsampling: int = 4,
aux_params: Optional[dict] = None,
**kwargs: dict[str, Any],
):
super().__init__()
# validate input params
if encoder_name.startswith("mit_b") and encoder_depth != 5:
raise ValueError(
"Encoder {} support only encoder_depth=5".format(encoder_name)
)
self.encoder = get_encoder(
encoder_name,
in_channels=in_channels,
depth=encoder_depth,
weights=encoder_weights,
**kwargs,
)
self.decoder = FPNDecoder(
encoder_channels=self.encoder.out_channels,
encoder_depth=encoder_depth,
pyramid_channels=decoder_pyramid_channels,
segmentation_channels=decoder_segmentation_channels,
dropout=decoder_dropout,
merge_policy=decoder_merge_policy,
interpolation_mode=decoder_interpolation,
)
self.segmentation_head = SegmentationHead(
in_channels=self.decoder.out_channels,
out_channels=classes,
activation=activation,
kernel_size=1,
upsampling=upsampling,
)
if aux_params is not None:
self.classification_head = ClassificationHead(
in_channels=self.encoder.out_channels[-1], **aux_params
)
else:
self.classification_head = None
self.name = "fpn-{}".format(encoder_name)
self.initialize()