-
Notifications
You must be signed in to change notification settings - Fork 105
/
Copy pathAutoencoder_Model_Save.py
143 lines (117 loc) · 4.4 KB
/
Autoencoder_Model_Save.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
# Simple Convolutional Autoencoder
# Code by GunhoChoi
import torch
import torch.nn as nn
import torch.utils as utils
from torch.autograd import Variable
import torchvision.datasets as dset
import torchvision.transforms as transforms
import numpy as np
import matplotlib.pyplot as plt
# Set Hyperparameters
epoch = 20
batch_size = 100
learning_rate = 0.001
# Download Data
mnist_train = dset.MNIST("./", train=True, transform=transforms.ToTensor(), target_transform=None, download=True)
mnist_test = dset.MNIST("./", train=False, transform=transforms.ToTensor(), target_transform=None, download=True)
# Set Data Loader(input pipeline)
train_loader = torch.utils.data.DataLoader(dataset=mnist_train,batch_size=batch_size,shuffle=True)
# Encoder
# torch.nn.Conv2d(in_channels, out_channels, kernel_size,
# stride=1, padding=0, dilation=1,
# groups=1, bias=True)
# batch x 1 x 28 x 28 -> batch x 512
class Encoder(nn.Module):
def __init__(self):
super(Encoder,self).__init__()
self.layer1 = nn.Sequential(
nn.Conv2d(1,16,3,padding=1), # batch x 16 x 28 x 28
nn.ReLU(),
nn.BatchNorm2d(16),
nn.Conv2d(16,32,3,padding=1), # batch x 32 x 28 x 28
nn.ReLU(),
nn.BatchNorm2d(32),
nn.Conv2d(32,64,3,padding=1), # batch x 32 x 28 x 28
nn.ReLU(),
nn.BatchNorm2d(64),
nn.MaxPool2d(2,2) # batch x 64 x 14 x 14
)
self.layer2 = nn.Sequential(
nn.Conv2d(64,128,3,padding=1), # batch x 64 x 14 x 14
nn.ReLU(),
nn.BatchNorm2d(128),
nn.MaxPool2d(2,2),
nn.Conv2d(128,256,3,padding=1), # batch x 64 x 7 x 7
nn.ReLU()
)
def forward(self,x):
out = self.layer1(x)
out = self.layer2(out)
out = out.view(batch_size, -1)
return out
encoder = Encoder().cuda()
# Decoder
# torch.nn.ConvTranspose2d(in_channels, out_channels, kernel_size,
# stride=1, padding=0, output_padding=0,
# groups=1, bias=True)
# output_height = (height-1)*stride + kernel_size - 2*padding + output_padding
# batch x 512 -> batch x 1 x 28 x 28
class Decoder(nn.Module):
def __init__(self):
super(Decoder,self).__init__()
self.layer1 = nn.Sequential(
nn.ConvTranspose2d(256,128,3,2,1,1),
nn.ReLU(),
nn.BatchNorm2d(128),
nn.ConvTranspose2d(128,64,3,1,1),
nn.ReLU(),
nn.BatchNorm2d(64)
)
self.layer2 = nn.Sequential(
nn.ConvTranspose2d(64,16,3,1,1),
nn.ReLU(),
nn.BatchNorm2d(16),
nn.ConvTranspose2d(16,1,3,2,1,1),
nn.ReLU()
)
def forward(self,x):
out = x.view(batch_size,256,7,7)
out = self.layer1(out)
out = self.layer2(out)
return out
decoder = Decoder().cuda()
# loss func and optimizer
# we compute reconstruction after decoder so use Mean Squared Error
# In order to use multi parameters with one optimizer,
# concat parameters after changing into list
parameters = list(encoder.parameters())+ list(decoder.parameters())
loss_func = nn.MSELoss()
optimizer = torch.optim.Adam(parameters, lr=learning_rate)
# train encoder and decoder
try:
encoder, decoder = torch.load('./model/autoencoder.pkl')
print("\n--------model restored--------\n")
except:
pass
for i in range(epoch):
for image,label in train_loader:
image = Variable(image).cuda()
#label = Variable(label.float()).cuda()
optimizer.zero_grad()
output = encoder(image)
output = decoder(output)
loss = loss_func(output,image)
loss.backward()
optimizer.step()
if i % 2 == 0:
torch.save([encoder,decoder],'./model/autoencoder.pkl')
print(loss)
input_img = image[0].cpu()
output_img = output[0].cpu()
inp = input_img.data.numpy()
out = output_img.data.numpy()
plt.imshow(inp[0],cmap='gray')
plt.show()
plt.imshow(out[0],cmap="gray")
plt.show()