-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathinference.py
325 lines (263 loc) · 15.1 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
import os
import sys
import time
import random
import pickle
import argparse
import os.path as osp
import torch
import torch.utils.data
from torch_geometric.loader import DataLoader
import pandas as pd
from tqdm import tqdm
from rdkit import RDLogger, Chem
from rdkit.Chem import QED, RDConfig
sys.path.append(os.path.join(RDConfig.RDContribDir, 'SA_Score'))
import sascorer
from src.util.utils import *
from src.model.models import Generator
from src.data.dataset import DruggenDataset
from src.data.utils import get_encoders_decoders, load_molecules
from src.model.loss import generator_loss
from src.util.smiles_cor import smi_correct
class Inference(object):
"""Inference class for DrugGEN."""
def __init__(self, config):
if config.set_seed:
np.random.seed(config.seed)
random.seed(config.seed)
torch.manual_seed(config.seed)
torch.cuda.manual_seed_all(config.seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
os.environ["PYTHONHASHSEED"] = str(config.seed)
print(f'Using seed {config.seed}')
self.device = torch.device("cuda" if torch.cuda.is_available() else 'cpu')
# Initialize configurations
self.submodel = config.submodel
self.inference_model = config.inference_model
self.sample_num = config.sample_num
self.disable_correction = config.disable_correction
# Data loader.
self.inf_smiles = config.inf_smiles # SMILES containing text file for first dataset.
# Write the full path to file.
inf_smiles_basename = osp.basename(self.inf_smiles)
# Get the base name without extension and add max_atom to it
self.max_atom = config.max_atom # Model is based on one-shot generation.
inf_smiles_base = os.path.splitext(inf_smiles_basename)[0]
# Change extension from .smi to .pt and add max_atom to the filename
self.inf_dataset_file = f"{inf_smiles_base}{self.max_atom}.pt"
self.inf_batch_size = config.inf_batch_size
self.train_smiles = config.train_smiles
self.train_drug_smiles = config.train_drug_smiles
self.mol_data_dir = config.mol_data_dir # Directory where the dataset files are stored.
self.dataset_name = self.inf_dataset_file.split(".")[0]
self.features = config.features # Small model uses atom types as node features. (Boolean, False uses atom types only.)
# Additional node features can be added. Please check new_dataloarder.py Line 102.
# Get atom and bond encoders/decoders
self.atom_encoder, self.atom_decoder, self.bond_encoder, self.bond_decoder = get_encoders_decoders(
self.train_smiles,
self.train_drug_smiles,
self.max_atom
)
self.inf_dataset = DruggenDataset(self.mol_data_dir,
self.inf_dataset_file,
self.inf_smiles,
self.max_atom,
self.features,
atom_encoder=self.atom_encoder,
atom_decoder=self.atom_decoder,
bond_encoder=self.bond_encoder,
bond_decoder=self.bond_decoder)
self.inf_loader = DataLoader(self.inf_dataset,
shuffle=True,
batch_size=self.inf_batch_size,
drop_last=True) # PyG dataloader for the first GAN.
self.m_dim = len(self.atom_decoder) if not self.features else int(self.inf_loader.dataset[0].x.shape[1]) # Atom type dimension.
self.b_dim = len(self.bond_decoder) # Bond type dimension.
self.vertexes = int(self.inf_loader.dataset[0].x.shape[0]) # Number of nodes in the graph.
# Model configurations.
self.act = config.act
self.dim = config.dim
self.depth = config.depth
self.heads = config.heads
self.mlp_ratio = config.mlp_ratio
self.dropout = config.dropout
self.build_model()
def build_model(self):
"""Create generators and discriminators."""
self.G = Generator(self.act,
self.vertexes,
self.b_dim,
self.m_dim,
self.dropout,
dim=self.dim,
depth=self.depth,
heads=self.heads,
mlp_ratio=self.mlp_ratio)
self.G.to(self.device)
self.print_network(self.G, 'G')
def print_network(self, model, name):
"""Print out the network information."""
num_params = 0
for p in model.parameters():
num_params += p.numel()
print(model)
print(name)
print("The number of parameters: {}".format(num_params))
def restore_model(self, submodel, model_directory):
"""Restore the trained generator and discriminator."""
print('Loading the model...')
G_path = os.path.join(model_directory, '{}-G.ckpt'.format(submodel))
self.G.load_state_dict(torch.load(G_path, map_location=lambda storage, loc: storage))
def inference(self):
# Load the trained generator.
self.restore_model(self.submodel, self.inference_model)
# smiles data for metrics calculation.
chembl_smiles = [line for line in open(self.train_smiles, 'r').read().splitlines()]
chembl_test = [line for line in open(self.inf_smiles, 'r').read().splitlines()]
drug_smiles = [line for line in open(self.train_drug_smiles, 'r').read().splitlines()]
drug_mols = [Chem.MolFromSmiles(smi) for smi in drug_smiles]
drug_vecs = [AllChem.GetMorganFingerprintAsBitVect(x, 2, nBits=1024) for x in drug_mols if x is not None]
# Make directories if not exist.
if not os.path.exists("experiments/inference/{}".format(self.submodel)):
os.makedirs("experiments/inference/{}".format(self.submodel))
if not self.disable_correction:
correct = smi_correct(self.submodel, "experiments/inference/{}".format(self.submodel))
search_res = pd.DataFrame(columns=["submodel", "validity",
"uniqueness", "novelty",
"novelty_test", "drug_novelty",
"max_len", "mean_atom_type",
"snn_chembl", "snn_drug", "IntDiv", "qed", "sa"])
self.G.eval()
start_time = time.time()
metric_calc_dr = []
uniqueness_calc = []
real_smiles_snn = []
nodes_sample = torch.Tensor(size=[1, self.vertexes, 1]).to(self.device)
f = open("experiments/inference/{}/inference_drugs.txt".format(self.submodel), "w")
f.write("SMILES")
f.write("\n")
val_counter = 0
none_counter = 0
# Inference mode
with torch.inference_mode():
pbar = tqdm(range(self.sample_num))
pbar.set_description('Inference mode for {} model started'.format(self.submodel))
for i, data in enumerate(self.inf_loader):
val_counter += 1
# Preprocess dataset
_, a_tensor, x_tensor = load_molecules(
data=data,
batch_size=self.inf_batch_size,
device=self.device,
b_dim=self.b_dim,
m_dim=self.m_dim,
)
_, _, node_sample, edge_sample = self.G(a_tensor, x_tensor)
g_edges_hat_sample = torch.max(edge_sample, -1)[1]
g_nodes_hat_sample = torch.max(node_sample, -1)[1]
fake_mol_g = [self.inf_dataset.matrices2mol(n_.data.cpu().numpy(), e_.data.cpu().numpy(), strict=False, file_name=self.dataset_name)
for e_, n_ in zip(g_edges_hat_sample, g_nodes_hat_sample)]
a_tensor_sample = torch.max(a_tensor, -1)[1]
x_tensor_sample = torch.max(x_tensor, -1)[1]
real_mols = [self.inf_dataset.matrices2mol(n_.data.cpu().numpy(), e_.data.cpu().numpy(), strict=True, file_name=self.dataset_name)
for e_, n_ in zip(a_tensor_sample, x_tensor_sample)]
inference_drugs = [None if line is None else Chem.MolToSmiles(line) for line in fake_mol_g]
inference_drugs = [None if x is None else max(x.split('.'), key=len) for x in inference_drugs]
for molecules in inference_drugs:
if molecules is None:
none_counter += 1
for molecules in inference_drugs:
if molecules is not None:
molecules = molecules.replace("*", "C")
f.write(molecules)
f.write("\n")
uniqueness_calc.append(molecules)
nodes_sample = torch.cat((nodes_sample, g_nodes_hat_sample.view(1, self.vertexes, 1)), 0)
pbar.update(1)
metric_calc_dr.append(molecules)
real_smiles_snn.append(real_mols[0])
generation_number = len([x for x in metric_calc_dr if x is not None])
if generation_number == self.sample_num or none_counter == self.sample_num:
break
f.close()
print("Inference completed, starting metrics calculation.")
if not self.disable_correction:
corrected = correct.correct("experiments/inference/{}/inference_drugs.txt".format(self.submodel))
gen_smi = corrected["SMILES"].tolist()
else:
gen_smi = pd.read_csv("experiments/inference/{}/inference_drugs.txt".format(self.submodel))["SMILES"].tolist()
et = time.time() - start_time
gen_vecs = [AllChem.GetMorganFingerprintAsBitVect(Chem.MolFromSmiles(x), 2, nBits=1024) for x in uniqueness_calc if Chem.MolFromSmiles(x) is not None]
real_vecs = [AllChem.GetMorganFingerprintAsBitVect(x, 2, nBits=1024) for x in real_smiles_snn if x is not None]
print("Inference mode is lasted for {:.2f} seconds".format(et))
print("Metrics calculation started using MOSES.")
if not self.disable_correction:
val = round(len(gen_smi)/self.sample_num, 3)
print("Validity: ", val, "\n")
else:
val = round(fraction_valid(gen_smi), 3)
print("Validity: ", val, "\n")
uniq = round(fraction_unique(gen_smi), 3)
nov = round(novelty(gen_smi, chembl_smiles), 3)
nov_test = round(novelty(gen_smi, chembl_test), 3)
drug_nov = round(novelty(gen_smi, drug_smiles), 3)
max_len = round(Metrics.max_component(gen_smi, self.vertexes), 3)
mean_atom = round(Metrics.mean_atom_type(nodes_sample), 3)
snn_chembl = round(average_agg_tanimoto(np.array(real_vecs), np.array(gen_vecs)), 3)
snn_drug = round(average_agg_tanimoto(np.array(drug_vecs), np.array(gen_vecs)), 3)
int_div = round((internal_diversity(np.array(gen_vecs)))[0], 3)
qed = round(np.mean([QED.qed(Chem.MolFromSmiles(x)) for x in gen_smi if Chem.MolFromSmiles(x) is not None]), 3)
sa = round(np.mean([sascorer.calculateScore(Chem.MolFromSmiles(x)) for x in gen_smi if Chem.MolFromSmiles(x) is not None]), 3)
print("Uniqueness: ", uniq, "\n")
print("Novelty (Train): ", nov, "\n")
print("Novelty (Inference): ", nov_test, "\n")
print("Novelty (Real Inhibitors): ", drug_nov, "\n")
print("Average Length: ", max_len, "\n")
print("Mean Atom Type: ", mean_atom, "\n")
print("SNN (ChEMBL): ", snn_chembl, "\n")
print("SNN (Real Inhibitors): ", snn_drug, "\n")
print("Internal Diversity: ", int_div, "\n")
print("QED: ", qed, "\n")
print("SA: ", sa, "\n")
print("Metrics are calculated.")
model_res = pd.DataFrame({"submodel": [self.submodel], "validity": [val],
"uniqueness": [uniq], "novelty": [nov],
"novelty_inference": [nov_test], "novelty_real_inhibitor": [drug_nov],
"ave_len": [max_len], "mean_atom_type": [mean_atom],
"snn_chembl": [snn_chembl], "snn_real_inhibitor": [snn_drug],
"IntDiv": [int_div], "qed": [qed], "sa": [sa]})
search_res = pd.concat([search_res, model_res], axis=0)
os.remove("experiments/inference/{}/inference_drugs.txt".format(self.submodel))
search_res.to_csv("experiments/inference/{}/inference_results.csv".format(self.submodel), index=False)
generatedsmiles = pd.DataFrame({"SMILES": gen_smi})
generatedsmiles.to_csv("experiments/inference/{}/inference_drugs.csv".format(self.submodel), index=False)
if __name__=="__main__":
parser = argparse.ArgumentParser()
# Inference configuration.
parser.add_argument('--submodel', type=str, default="DrugGEN", help="Chose model subtype: DrugGEN, NoTarget", choices=['DrugGEN', 'NoTarget'])
parser.add_argument('--inference_model', type=str, help="Path to the model for inference")
parser.add_argument('--sample_num', type=int, default=100, help='inference samples')
parser.add_argument('--disable_correction', action='store_true', help='Disable SMILES correction')
# Data configuration.
parser.add_argument('--inf_smiles', type=str, required=True)
parser.add_argument('--train_smiles', type=str, required=True)
parser.add_argument('--train_drug_smiles', type=str, required=True)
parser.add_argument('--inf_batch_size', type=int, default=1, help='Batch size for inference')
parser.add_argument('--mol_data_dir', type=str, default='data')
parser.add_argument('--features', action='store_true', help='features dimension for nodes')
# Model configuration.
parser.add_argument('--act', type=str, default="relu", help="Activation function for the model.", choices=['relu', 'tanh', 'leaky', 'sigmoid'])
parser.add_argument('--max_atom', type=int, default=45, help='Max atom number for molecules must be specified.')
parser.add_argument('--dim', type=int, default=128, help='Dimension of the Transformer Encoder model for the GAN.')
parser.add_argument('--depth', type=int, default=1, help='Depth of the Transformer model from the GAN.')
parser.add_argument('--heads', type=int, default=8, help='Number of heads for the MultiHeadAttention module from the GAN.')
parser.add_argument('--mlp_ratio', type=int, default=3, help='MLP ratio for the Transformer.')
parser.add_argument('--dropout', type=float, default=0., help='dropout rate')
# Seed configuration.
parser.add_argument('--set_seed', action='store_true', help='set seed for reproducibility')
parser.add_argument('--seed', type=int, default=1, help='seed for reproducibility')
config = parser.parse_args()
inference = Inference(config)
inference.inference()