-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathprediction.py
151 lines (109 loc) · 5.76 KB
/
prediction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import os
os.environ["TOKENIZER_PARALLELISM"] = "false"
os.environ["WANDB_DISABLED"] = "true"
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
from torch.nn import CrossEntropyLoss
from torch.utils.data import Dataset
from transformers import BertPreTrainedModel, RobertaConfig, RobertaTokenizerFast, Trainer
from transformers.models.roberta.modeling_roberta import (
RobertaClassificationHead,
RobertaConfig,
RobertaModel,
)
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--dataset", default="bbbp", help="dataset selection.")
parser.add_argument("--tokenizer_name", default="data/RobertaFastTokenizer", metavar="/path/to/dataset/", help="Tokenizer selection.")
parser.add_argument("--pred_set", default="data/finetuning_datasets/classification/bbbp_mock/bbbp_mock_modelO_embeddings.pkl", metavar="/path/to/dataset/", help="Test set for predictions.")
parser.add_argument("--training_args", default= "data/finetuned_models/bbbp/training_args.bin", metavar="/path/to/dataset/", help="Trained model arguments.")
parser.add_argument("--model_name", default="data/finetuned_models/bbbp", metavar="/path/to/dataset/", help="Path to the model.")
args = parser.parse_args()
# Model
class CustomClassificationHead(nn.Module):
def __init__(self, input_dim, num_labels):
super(CustomClassificationHead, self).__init__()
self.dense = nn.Linear(input_dim, input_dim)
classifier_dropout = (
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
)
self.dropout = nn.Dropout(classifier_dropout)
self.out_proj = nn.Linear(input_dim, num_labels)
def forward(self, features):
x = self.dropout(features)
x = self.dense(x)
x = torch.tanh(x)
x = self.dropout(x)
x = self.out_proj(x)
return x
class MultiModalTransformers_For_Classification(BertPreTrainedModel):
def __init__(self, config):
super(MultiModalTransformers_For_Classification, self).__init__(config)
self.num_labels = config.num_labels
self.roberta = RobertaModel(config)
combined_hidden_size = 2112
self.classifier = CustomClassificationHead(combined_hidden_size, self.num_labels)
def forward(self, input_ids, seq_emb, text_emb, unimol_emb, kg_emb, attention_mask, labels=None):
outputs = self.roberta(input_ids, attention_mask=attention_mask)
sequence_output = outputs[0]
sequence_output = sequence_output[:, 0, :] # take <s> token (equiv. to [CLS])
full_embeddings = torch.cat((sequence_output, text_emb, unimol_emb, kg_emb), dim=1)
assert full_embeddings.shape[1] == 2112
# following line gives IndexError: too many indices for tensor of dimension 2, how to fix?
# logits = self.classifier(full_embeddings)
# fixed line:
logits = self.classifier(full_embeddings)
outputs = (logits,) + outputs[2:]
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
outputs = (loss,) + outputs
return outputs # (loss), logits, (hidden_states), (attentions)
model_class = MultiModalTransformers_For_Classification
config_class = RobertaConfig
tokenizer_name = args.tokenizer_name
tokenizer_class = RobertaTokenizerFast
tokenizer = tokenizer_class.from_pretrained(tokenizer_name, do_lower_case=False)
# Prepare and Get Data
class SELFIESTransfomers_Dataset(Dataset):
def __init__(self, data, tokenizer, MAX_LEN):
text, seq_emb, text_emb, unimol_emb, kg_emb = data
self.examples = tokenizer(text=text, text_pair=None, truncation=True, padding="max_length", max_length=MAX_LEN, return_tensors="pt")
self.seq_emb = seq_emb
self.text_emb = torch.tensor(text_emb, dtype=torch.float)
self.unimol_emb = torch.tensor(unimol_emb, dtype=torch.float)
self.kg_emb = torch.tensor(kg_emb, dtype=torch.float)
def __len__(self):
return len(self.examples["input_ids"])
def __getitem__(self, index):
item = {key: self.examples[key][index] for key in self.examples}
item['seq_emb'] = self.seq_emb[index]
item['text_emb'] = self.text_emb[index]
item['unimol_emb'] = self.unimol_emb[index]
item['kg_emb'] = self.kg_emb[index]
return item
pred_set = pd.read_pickle(args.pred_set)
MAX_LEN = 128
pred_examples = (pred_set['selfies'].astype(str).tolist(),
pred_set['sequence_embeddings'].tolist(),
pred_set['text_embeddings'].tolist(),
pred_set['unimol_embeddings'].tolist(),
pred_set['kg_embeddings'].tolist()
)
pred_dataset = SELFIESTransfomers_Dataset(pred_examples, tokenizer, MAX_LEN)
training_args = torch.load(args.training_args)
model_name = args.model_name
config = config_class.from_pretrained(model_name, num_labels=2)
model = model_class.from_pretrained(model_name, config=config)
trainer = Trainer(model=model, args=training_args) # the instantiated 🤗 Transformers model to be trained # training arguments, defined above # training dataset # evaluation dataset
raw_pred, label_ids, metrics = trainer.predict(pred_dataset)
print('Raw pred:', raw_pred)
y_pred = np.argmax(raw_pred, axis=1).astype(int)
res = pd.concat([pred_set, pd.DataFrame(y_pred, columns=["prediction"])], axis = 1)
if not os.path.exists("data/predictions"):
os.makedirs("data/predictions")
res = res.iloc[:, [0, -1]]
res.to_csv("data/predictions/{}_predictions.csv".format(args.dataset), index=False)
print("Predictions saved to data/predictions/{}_predictions.csv".format(args.dataset))