forked from JimmyHHua/opencv_tutorials
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathopencv_090.py
55 lines (44 loc) · 1.52 KB
/
opencv_090.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import cv2 as cv
import numpy as np
cap = cv.VideoCapture('test.mp4')
# 读取第一帧
ret,frame = cap.read()
cv.namedWindow("Demo", cv.WINDOW_AUTOSIZE)
# 选择ROI区域
x, y, w, h = cv.selectROI("Demo", frame, True, False)
track_window = (x, y, w, h)
# 获取ROI直方图
roi = frame[y:y+h, x:x+w]
hsv_roi = cv.cvtColor(roi, cv.COLOR_BGR2HSV)
mask = cv.inRange(hsv_roi, (26, 43, 46), (34, 255, 255))
roi_hist = cv.calcHist([hsv_roi],[0],mask,[180],[0,180])
cv.normalize(roi_hist,roi_hist,0,255,cv.NORM_MINMAX)
# 设置搜索跟踪分析
term_crit = ( cv.TERM_CRITERIA_EPS | cv.TERM_CRITERIA_COUNT, 10, 1)
tracking_path = []
while True:
ret, frame = cap.read()
if ret is False:
break;
hsv = cv.cvtColor(frame, cv.COLOR_BGR2HSV)
dst = cv.calcBackProject([hsv],[0],roi_hist,[0,180],1)
# ,搜索更新roi区域, 保持运行轨迹
ret, track_box = cv.CamShift(dst, track_window, term_crit)
track_window = track_box
# 椭圆中心
pt = np.int32(ret[0])
if pt[0] > 0 and pt[1] > 0:
tracking_path.append(pt)
# 绘制跟踪对象位置窗口与对象运行轨迹
#cv.ellipse(frame, ret, (0, 0, 255), 3, 8)
for i in range(1, len(tracking_path)):
cv.line(frame, (tracking_path[i - 1][0], tracking_path[i - 1][1]),
(tracking_path[i][0], tracking_path[i][1]), (0, 255, 0), 2, 6, 0)
cv.imshow('Demo',frame)
k = cv.waitKey(50) & 0xff
if k == 27:
break
else:
cv.imwrite(chr(k)+".jpg",frame)
cv.destroyAllWindows()
cap.release()