forked from GarrickLin/MXNet2Caffe
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmxnet2caffe_all_in_one_experiment.py
142 lines (124 loc) · 5.53 KB
/
mxnet2caffe_all_in_one_experiment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import sys, argparse
import find_mxnet, find_caffe
import mxnet as mx
import caffe
from json2prototxt_experiment import json2prototxt
import easydict
parser = argparse.ArgumentParser(description='Convert MXNet model to Caffe model')
parser.add_argument('--mx-model', type=str, default='../model-r50-am-lfw/model')
parser.add_argument('--mx-epoch', type=int, default=0)
parser.add_argument('--cf-prototxt', type=str, default='../model-r50-am-lfw/model.prototxt')
parser.add_argument('--data-shape', type=int,nargs=3, default=[3,96,96])
args = parser.parse_args()
args.cf_model=args.cf_prototxt.replace(".prototxt",".caffemodel")
print args.data_shape
json2prototxt_args=easydict.EasyDict()
json2prototxt_args.mx_json=args.mx_model+"-symbol.json"
json2prototxt_args.cf_prototxt=args.cf_prototxt
json2prototxt_args.data_shape=args.data_shape
json2prototxt(json2prototxt_args)
# ------------------------------------------
# Load
_, arg_params, aux_params = mx.model.load_checkpoint(args.mx_model, args.mx_epoch)
net = caffe.Net(args.cf_prototxt, caffe.TRAIN)
# ------------------------------------------
# Convert
all_keys = arg_params.keys() + aux_params.keys()
all_keys.sort()
print('----------------------------------\n')
print('ALL KEYS IN MXNET:')
print(all_keys)
print('%d KEYS' %len(all_keys))
print('----------------------------------\n')
print('VALID KEYS:')
for i_key,key_i in enumerate(all_keys):
try:
if 'data' is key_i:
pass
elif '_weight' in key_i:
key_caffe = key_i.replace('_weight','')
net.params[key_caffe][0].data.flat = arg_params[key_i].asnumpy().flat
elif '_bias' in key_i:
key_caffe = key_i.replace('_bias','')
net.params[key_caffe][1].data.flat = arg_params[key_i].asnumpy().flat
elif '_gamma' in key_i and 'relu' not in key_i:
key_caffe = key_i.replace('_gamma','_scale')
net.params[key_caffe][0].data.flat = arg_params[key_i].asnumpy().flat
# TODO: support prelu
elif '_gamma' in key_i and 'relu' in key_i: # for prelu
key_caffe = key_i.replace('_gamma','')
assert (len(net.params[key_caffe]) == 1)
net.params[key_caffe][0].data.flat = arg_params[key_i].asnumpy().flat
elif '_beta' in key_i:
key_caffe = key_i.replace('_beta','_scale')
net.params[key_caffe][1].data.flat = arg_params[key_i].asnumpy().flat
elif '_moving_mean' in key_i:
key_caffe = key_i.replace('_moving_mean','')
net.params[key_caffe][0].data.flat = aux_params[key_i].asnumpy().flat
net.params[key_caffe][2].data[...] = 1
elif '_moving_var' in key_i:
key_caffe = key_i.replace('_moving_var','')
net.params[key_caffe][1].data.flat = aux_params[key_i].asnumpy().flat
net.params[key_caffe][2].data[...] = 1
elif '_running_mean' in key_i:
key_caffe = key_i.replace('_running_mean','')
net.params[key_caffe][0].data.flat = aux_params[key_i].asnumpy().flat
net.params[key_caffe][2].data[...] = 1
elif '_running_var' in key_i:
key_caffe = key_i.replace('_running_var','')
net.params[key_caffe][1].data.flat = aux_params[key_i].asnumpy().flat
net.params[key_caffe][2].data[...] = 1
else:
sys.exit("Warning! Unknown mxnet:{}".format(key_i))
print("% 3d | %s -> %s, initialized."
%(i_key, key_i.ljust(40), key_caffe.ljust(30)))
except KeyError:
#try gluon style
try:
if 'data' is key_i:
pass
elif '_weight' in key_i:
key_caffe = key_i.replace('_weight', '_fwd')
net.params[key_caffe][0].data.flat = arg_params[key_i].asnumpy().flat
elif '_bias' in key_i:
key_caffe = key_i.replace('_bias', '_fwd')
net.params[key_caffe][1].data.flat = arg_params[key_i].asnumpy().flat
elif '_gamma' in key_i and 'relu' not in key_i:
key_caffe = key_i.replace('_gamma', '_fwd_scale')
net.params[key_caffe][0].data.flat = arg_params[key_i].asnumpy().flat
# TODO: support prelu
elif '_gamma' in key_i and 'relu' in key_i: # for prelu
key_caffe = key_i.replace('_gamma', '')
assert (len(net.params[key_caffe]) == 1)
net.params[key_caffe][0].data.flat = arg_params[key_i].asnumpy().flat
elif '_beta' in key_i:
key_caffe = key_i.replace('_beta', '_fwd_scale')
net.params[key_caffe][1].data.flat = arg_params[key_i].asnumpy().flat
elif '_moving_mean' in key_i:
key_caffe = key_i.replace('_moving_mean', '')
net.params[key_caffe][0].data.flat = aux_params[key_i].asnumpy().flat
net.params[key_caffe][2].data[...] = 1
elif '_moving_var' in key_i:
key_caffe = key_i.replace('_moving_var', '')
net.params[key_caffe][1].data.flat = aux_params[key_i].asnumpy().flat
net.params[key_caffe][2].data[...] = 1
elif '_running_mean' in key_i:
key_caffe = key_i.replace('_running_mean', '_fwd')
net.params[key_caffe][0].data.flat = aux_params[key_i].asnumpy().flat
net.params[key_caffe][2].data[...] = 1
elif '_running_var' in key_i:
key_caffe = key_i.replace('_running_var', '_fwd')
net.params[key_caffe][1].data.flat = aux_params[key_i].asnumpy().flat
net.params[key_caffe][2].data[...] = 1
else:
sys.exit("Warning! Unknown mxnet:{}".format(key_i))
print("% 3d | %s -> %s, initialized."
% (i_key, key_i.ljust(40), key_caffe.ljust(30)))
except KeyError:
print("\nError! key error mxnet:{}".format(key_i))
pass
pass
# ------------------------------------------
# Finish
net.save(args.cf_model)
print("\n- Finished.\n")