|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": 17, |
| 6 | + "metadata": { |
| 7 | + "collapsed": true |
| 8 | + }, |
| 9 | + "outputs": [], |
| 10 | + "source": [ |
| 11 | + "doc1 = \"Sugar is bad to consume. My sister likes to have sugar, but not my father.\"\n", |
| 12 | + "doc2 = \"My father spends a lot of time driving my sister around to dance practice.\"\n", |
| 13 | + "doc3 = \"Doctors suggest that driving may cause increased stress and blood pressure.\"\n", |
| 14 | + "doc4 = \"Sometimes I feel pressure to perform well at school, but my father never seems to drive my sister to do better.\"\n", |
| 15 | + "doc5 = \"Health experts say that Sugar is not good for your lifestyle.\"\n", |
| 16 | + "\n", |
| 17 | + "doc_complete = [doc1, doc2, doc3, doc4, doc5]" |
| 18 | + ] |
| 19 | + }, |
| 20 | + { |
| 21 | + "cell_type": "code", |
| 22 | + "execution_count": 18, |
| 23 | + "metadata": {}, |
| 24 | + "outputs": [], |
| 25 | + "source": [ |
| 26 | + "from nltk.corpus import stopwords\n", |
| 27 | + "from nltk.stem.wordnet import WordNetLemmatizer\n", |
| 28 | + "import string\n", |
| 29 | + "stop = set(stopwords.words('english'))\n", |
| 30 | + "exclude = set(string.punctuation)\n", |
| 31 | + "lemma = WordNetLemmatizer()\n", |
| 32 | + "\n", |
| 33 | + "def clean(doc):\n", |
| 34 | + " stop_free = ' '.join([i for i in doc.lower().split() if i not in stop])\n", |
| 35 | + " punc_free = ''.join([ch for ch in stop_free if ch not in exclude])\n", |
| 36 | + " normalized = ' '.join(lemma.lemmatize(word) for word in punc_free.split())\n", |
| 37 | + " return normalized\n", |
| 38 | + "doc_clean = [clean(doc).split() for doc in doc_complete]" |
| 39 | + ] |
| 40 | + }, |
| 41 | + { |
| 42 | + "cell_type": "code", |
| 43 | + "execution_count": 19, |
| 44 | + "metadata": {}, |
| 45 | + "outputs": [], |
| 46 | + "source": [ |
| 47 | + "import gensim\n", |
| 48 | + "from gensim import corpora\n", |
| 49 | + "dictionary = corpora.Dictionary(doc_clean)\n", |
| 50 | + "doc_term_matrix = [dictionary.doc2bow(doc) for doc in doc_clean]" |
| 51 | + ] |
| 52 | + }, |
| 53 | + { |
| 54 | + "cell_type": "code", |
| 55 | + "execution_count": 20, |
| 56 | + "metadata": { |
| 57 | + "collapsed": true |
| 58 | + }, |
| 59 | + "outputs": [], |
| 60 | + "source": [ |
| 61 | + "Lda = gensim.models.ldamodel.LdaModel\n", |
| 62 | + "ldamodel = Lda(doc_term_matrix, num_topics = 3, id2word = dictionary, passes=50)" |
| 63 | + ] |
| 64 | + }, |
| 65 | + { |
| 66 | + "cell_type": "code", |
| 67 | + "execution_count": 27, |
| 68 | + "metadata": {}, |
| 69 | + "outputs": [ |
| 70 | + { |
| 71 | + "name": "stdout", |
| 72 | + "output_type": "stream", |
| 73 | + "text": [ |
| 74 | + "[(0, '0.135*\"sugar\" + 0.054*\"like\" + 0.054*\"consume\" + 0.054*\"bad\"'), (1, '0.056*\"father\" + 0.056*\"sister\" + 0.056*\"pressure\" + 0.056*\"driving\"'), (2, '0.029*\"sister\" + 0.029*\"father\" + 0.029*\"blood\" + 0.029*\"may\"')]\n" |
| 75 | + ] |
| 76 | + } |
| 77 | + ], |
| 78 | + "source": [ |
| 79 | + "print(ldamodel.print_topics(num_topics=3, num_words=4))" |
| 80 | + ] |
| 81 | + } |
| 82 | + ], |
| 83 | + "metadata": { |
| 84 | + "kernelspec": { |
| 85 | + "display_name": "Python 3", |
| 86 | + "language": "python", |
| 87 | + "name": "python3" |
| 88 | + }, |
| 89 | + "language_info": { |
| 90 | + "codemirror_mode": { |
| 91 | + "name": "ipython", |
| 92 | + "version": 3 |
| 93 | + }, |
| 94 | + "file_extension": ".py", |
| 95 | + "mimetype": "text/x-python", |
| 96 | + "name": "python", |
| 97 | + "nbconvert_exporter": "python", |
| 98 | + "pygments_lexer": "ipython3", |
| 99 | + "version": "3.6.1" |
| 100 | + } |
| 101 | + }, |
| 102 | + "nbformat": 4, |
| 103 | + "nbformat_minor": 2 |
| 104 | +} |
0 commit comments