Skip to content

Commit 2293d37

Browse files
committed
Fix issue TheAlgorithms#12108: Added Ridge Regression to Machine Learning
1 parent 6e24935 commit 2293d37

File tree

1 file changed

+108
-0
lines changed

1 file changed

+108
-0
lines changed

machine_learning/ridge_regression.py

+108
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,108 @@
1+
import numpy as np
2+
import pandas as pd
3+
4+
5+
class RidgeRegression:
6+
def __init__(self, alpha=0.001, lambda_=0.1, iterations=1000):
7+
"""
8+
Ridge Regression Constructor
9+
:param alpha: Learning rate for gradient descent
10+
:param lambda_: Regularization parameter (L2 regularization)
11+
:param iterations: Number of iterations for gradient descent
12+
"""
13+
self.alpha = alpha
14+
self.lambda_ = lambda_
15+
self.iterations = iterations
16+
self.theta = None
17+
18+
def feature_scaling(self, X):
19+
"""
20+
Normalize features to have mean 0 and standard deviation 1
21+
:param X: Input features, shape (m, n)
22+
:return: Scaled features, mean, and std for each feature
23+
"""
24+
mean = np.mean(X, axis=0)
25+
std = np.std(X, axis=0)
26+
27+
# Avoid division by zero for constant features (std = 0)
28+
std[std == 0] = 1 # Set std=1 for constant features to avoid NaN
29+
30+
X_scaled = (X - mean) / std
31+
return X_scaled, mean, std
32+
33+
def fit(self, X, y):
34+
"""
35+
Fit the Ridge Regression model to the training data
36+
:param X: Input features, shape (m, n)
37+
:param y: Target values, shape (m,)
38+
"""
39+
X_scaled, mean, std = self.feature_scaling(X) # Normalize features
40+
m, n = X_scaled.shape
41+
self.theta = np.zeros(n) # Initialize weights to zeros
42+
43+
for i in range(self.iterations):
44+
predictions = X_scaled.dot(self.theta)
45+
error = predictions - y
46+
47+
# Compute gradient with L2 regularization
48+
gradient = (X_scaled.T.dot(error) + self.lambda_ * self.theta) / m
49+
self.theta -= self.alpha * gradient # Update weights
50+
51+
def predict(self, X):
52+
"""
53+
Predict values using the trained model
54+
:param X: Input features, shape (m, n)
55+
:return: Predicted values, shape (m,)
56+
"""
57+
X_scaled, _, _ = self.feature_scaling(X) # Scale features using training data
58+
return X_scaled.dot(self.theta)
59+
60+
def compute_cost(self, X, y):
61+
"""
62+
Compute the cost function with regularization
63+
:param X: Input features, shape (m, n)
64+
:param y: Target values, shape (m,)
65+
:return: Computed cost
66+
"""
67+
X_scaled, _, _ = self.feature_scaling(X) # Scale features using training data
68+
m = len(y)
69+
predictions = X_scaled.dot(self.theta)
70+
cost = (1 / (2 * m)) * np.sum((predictions - y) ** 2) + (
71+
self.lambda_ / (2 * m)
72+
) * np.sum(self.theta**2)
73+
return cost
74+
75+
def mean_absolute_error(self, y_true, y_pred):
76+
"""
77+
Compute Mean Absolute Error (MAE) between true and predicted values
78+
:param y_true: Actual target values, shape (m,)
79+
:param y_pred: Predicted target values, shape (m,)
80+
:return: MAE
81+
"""
82+
return np.mean(np.abs(y_true - y_pred))
83+
84+
85+
# Example usage
86+
if __name__ == "__main__":
87+
# Load dataset
88+
df = pd.read_csv(
89+
"https://raw.githubusercontent.com/yashLadha/The_Math_of_Intelligence/master/Week1/ADRvsRating.csv"
90+
)
91+
X = df[["Rating"]].values # Feature: Rating
92+
y = df["ADR"].values # Target: ADR
93+
y = (y - np.mean(y)) / np.std(y)
94+
95+
# Add bias term (intercept) to the feature matrix
96+
X = np.c_[np.ones(X.shape[0]), X] # Add intercept term
97+
98+
# Initialize and train the Ridge Regression model
99+
model = RidgeRegression(alpha=0.01, lambda_=0.1, iterations=1000)
100+
model.fit(X, y)
101+
102+
# Predictions
103+
predictions = model.predict(X)
104+
105+
# Results
106+
print("Optimized Weights:", model.theta)
107+
print("Cost:", model.compute_cost(X, y))
108+
print("Mean Absolute Error:", model.mean_absolute_error(y, predictions))

0 commit comments

Comments
 (0)