forked from PaddlePaddle/PaddleSeg
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcityscapes_noconfig.py
326 lines (293 loc) · 10.8 KB
/
cityscapes_noconfig.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
# This file is made available under Apache License, Version 2.0
# This file is based on code available under the MIT License here:
# https://github.com/ZJULearning/MaxSquareLoss/blob/master/datasets/cityscapes_Dataset.py
#
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import random
import numpy as np
import collections.abc as abc
from PIL import Image, ImageOps, ImageFilter, ImageFile
import paddle
from paddle import io
import paddleseg.transforms.functional as F
ImageFile.LOAD_TRUNCATED_IMAGES = True
IMG_MEAN = np.array(
(104.00698793, 116.66876762, 122.67891434), dtype=np.float32)
label_colours = list(
map(
tuple,
[
[128, 64, 128],
[244, 35, 232],
[70, 70, 70],
[102, 102, 156],
[190, 153, 153],
[153, 153, 153],
[250, 170, 30],
[220, 220, 0],
[107, 142, 35],
[152, 251, 152],
[0, 130, 180],
[220, 20, 60],
[255, 0, 0],
[0, 0, 142],
[0, 0, 70],
[0, 60, 100],
[0, 80, 100],
[0, 0, 230],
[119, 11, 32],
[0, 0, 0], # the color of ignored label
]))
# Labels
ignore_label = 255
cityscapes_id_to_trainid = {
-1: ignore_label,
0: ignore_label,
1: ignore_label,
2: ignore_label,
3: ignore_label,
4: ignore_label,
5: ignore_label,
6: ignore_label,
7: 0,
8: 1,
9: ignore_label,
10: ignore_label,
11: 2,
12: 3,
13: 4,
14: ignore_label,
15: ignore_label,
16: ignore_label,
17: 5,
18: ignore_label,
19: 6,
20: 7,
21: 8,
22: 9,
23: 10,
24: 11,
25: 12,
26: 13,
27: 14,
28: 15,
29: ignore_label,
30: ignore_label,
31: 16,
32: 17,
33: 18
}
def to_tuple(x):
return x if isinstance(x, abc.Iterable) else (x, x)
class CityDataset(io.Dataset):
def __init__(self,
root,
list_path,
split='train',
base_size=769,
crop_size=769,
training=True,
random_mirror=False,
random_crop=False,
resize=False,
gaussian_blur=False,
class_16=False,
class_13=False,
edge=True,
logger=None):
self.data_path = root
self.list_path = list_path
self.split = split
self.base_size = to_tuple(base_size)
self.crop_size = to_tuple(crop_size)
self.training = training
self.logger = logger
# Augmentations
self.random_mirror = random_mirror
self.random_crop = random_crop
self.resize = resize
self.gaussian_blur = gaussian_blur
self.NUM_CLASSES = 19
self.ignore_label = 255
self.edge = edge
# Files
item_list_filepath = os.path.join(self.list_path, self.split + ".txt")
if not os.path.exists(item_list_filepath):
raise Warning("split must be train/val/trainval")
self.image_filepath = os.path.join(self.data_path, "leftImg8bit")
self.gt_filepath = os.path.join(self.data_path, "gtFine")
self.items = [id.strip() for id in open(item_list_filepath)]
self.id_to_trainid = cityscapes_id_to_trainid
# In SYNTHIA-to-Cityscapes case, only consider 16 shared classes
self.class_16 = class_16
synthia_set_16 = [0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 15, 17, 18]
self.trainid_to_16id = {id: i for i, id in enumerate(synthia_set_16)}
# In Cityscapes-to-NTHU case, only consider 13 shared classes
self.class_13 = class_13
synthia_set_13 = [0, 1, 2, 6, 7, 8, 10, 11, 12, 13, 15, 17, 18]
self.trainid_to_13id = {id: i for i, id in enumerate(synthia_set_13)}
print("{} num images in Cityscapes {} set have been loaded.".format(
len(self.items), self.split))
def id2trainId(self, label, reverse=False, ignore_label=255):
label_copy = ignore_label * np.ones(label.shape, dtype=np.float32)
for k, v in self.id_to_trainid.items():
label_copy[label == k] = v
if self.class_16:
label_copy_16 = ignore_label * \
np.ones(label.shape, dtype=np.float32)
for k, v in self.trainid_to_16id.items():
label_copy_16[label_copy == k] = v
label_copy = label_copy_16
if self.class_13:
label_copy_13 = ignore_label * \
np.ones(label.shape, dtype=np.float32)
for k, v in self.trainid_to_13id.items():
label_copy_13[label_copy == k] = v
label_copy = label_copy_13
return label_copy
def __getitem__(self, item):
id = self.items[item]
filename = id.split("train_")[-1].split("val_")[-1].split("test_")[-1]
image_filepath = os.path.join(self.image_filepath,
id.split("_")[0], id.split("_")[1])
image_filename = filename + "_leftImg8bit.png"
image_path = os.path.join(image_filepath, image_filename)
image = Image.open(image_path).convert("RGB")
gt_filepath = os.path.join(self.gt_filepath,
id.split("_")[0], id.split("_")[1])
gt_filename = filename + "_gtFine_labelIds.png"
gt_image_path = os.path.join(gt_filepath, gt_filename)
gt_image = Image.open(gt_image_path)
if (self.split == "train" or
self.split == "trainval") and self.training:
image, gt_image, edge_mask = self._train_sync_transform(image,
gt_image)
return image, gt_image, edge_mask
else:
image, gt_image, edge_mask = self._val_sync_transform(image,
gt_image)
return image, gt_image, edge_mask, id
def _train_sync_transform(self, img, mask):
'''
:param image: PIL input image
:param gt_image: PIL input gt_image
:return:
'''
if self.random_mirror:
# random mirror
a = random.random()
if a < 0.5:
img = img.transpose(Image.FLIP_LEFT_RIGHT)
if mask:
mask = mask.transpose(Image.FLIP_LEFT_RIGHT)
crop_w, crop_h = self.crop_size
if self.random_crop:
# random scale
base_w, base_h = self.base_size
w, h = img.size
assert w >= h
if (base_w / w) > (base_h / h):
base_size = base_w
short_size = random.randint(
int(base_size * 0.5), int(base_size * 2.0))
ow = short_size
oh = int(1.0 * h * ow / w)
else:
base_size = base_h
short_size = random.randint(
int(base_size * 0.5), int(base_size * 2.0))
oh = short_size
ow = int(1.0 * w * oh / h)
img = img.resize((ow, oh), Image.BICUBIC)
if mask:
mask = mask.resize((ow, oh), Image.NEAREST)
# pad crop
if ow < crop_w or oh < crop_h:
padh = crop_h - oh if oh < crop_h else 0
padw = crop_w - ow if ow < crop_w else 0
img = ImageOps.expand(img, border=(0, 0, padw, padh), fill=0)
if mask:
mask = ImageOps.expand(
mask, border=(0, 0, padw, padh), fill=0)
# random crop crop_size
w, h = img.size
x1 = random.randint(0, w - crop_w)
y1 = random.randint(0, h - crop_h)
img = img.crop((x1, y1, x1 + crop_w, y1 + crop_h))
if mask:
mask = mask.crop((x1, y1, x1 + crop_w, y1 + crop_h))
elif self.resize:
img = img.resize(self.crop_size, Image.BICUBIC)
if mask:
mask = mask.resize(self.crop_size, Image.NEAREST)
if self.gaussian_blur:
# gaussian blur as in PSP
b = random.random()
c = random.random()
# print(a,b,c)
if b < 0.5:
img = img.filter(ImageFilter.GaussianBlur(radius=c))
# final transform
if mask:
img = self._img_transform(img)
mask, edge_mask = self._mask_transform(mask)
return img, mask, edge_mask
else:
img = self._img_transform(img)
return img
def _val_sync_transform(self, img, mask):
if self.random_crop:
crop_w, crop_h = self.crop_size
w, h = img.size
if crop_w / w < crop_h / h:
oh = crop_h
ow = int(1.0 * w * oh / h)
else:
ow = crop_w
oh = int(1.0 * h * ow / w)
img = img.resize((ow, oh), Image.BICUBIC)
mask = mask.resize((ow, oh), Image.NEAREST)
# center crop
w, h = img.size
x1 = int(round((w - crop_w) / 2.))
y1 = int(round((h - crop_h) / 2.))
img = img.crop((x1, y1, x1 + crop_w, y1 + crop_h))
mask = mask.crop((x1, y1, x1 + crop_w, y1 + crop_h))
elif self.resize:
img = img.resize(self.crop_size, Image.BICUBIC)
mask = mask.resize(self.crop_size, Image.NEAREST)
# final transform
img = self._img_transform(img)
mask, edge_mask = self._mask_transform(mask)
return img, mask, edge_mask
def _img_transform(self, image):
image = np.asarray(image, np.float32)
image = image[:, :, ::-1] # change to BGR
image -= IMG_MEAN
image = image.transpose((2, 0, 1)).copy() # (C x H x W)
new_image = paddle.to_tensor(image)
return new_image
def _mask_transform(self, gt_image):
target = np.asarray(gt_image, np.float32)
target = self.id2trainId(target).copy()
edge_mask = None
if self.edge:
edge_mask = F.mask_to_binary_edge(
target, radius=1, num_classes=self.NUM_CLASSES)
target = paddle.to_tensor(target)
return target, edge_mask
def __len__(self):
return len(self.items)