forked from tqian/binary-outcome-mrt
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsimulation_efficiency.R
232 lines (178 loc) · 9.12 KB
/
simulation_efficiency.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
rm(list = ls())
source("dgm_binary_ar1_covariate.R")
# try out the range of Y
if (0) {
set.seed(123)
dta <- dgm_binary_uniform_St(100, 30, rand_prob = 0.5)
summary(dta$prob_Y)
summary(dta$prob_A)
}
compute_result_beta <- function(beta_true, beta, beta_se, beta_se_adjusted, moderator_vars, control_vars, significance_level,
na.rm = FALSE) {
beta_true_array <- array(NA, dim = dim(beta), dimnames = dimnames(beta))
for (ind1 in 1:dim(beta_true_array)[1]) {
for (ind3 in 1:dim(beta_true_array)[3]) {
beta_true_array[ind1, , ind3] <- beta_true
}
}
p <- length(moderator_vars) + 1
q <- length(control_vars) + 1
bias <- apply(beta - beta_true_array, c(1,2), mean, na.rm = na.rm)
sd <- apply(beta, c(1,2), sd, na.rm = na.rm)
rmse <- apply(beta - beta_true_array, c(1,2), function(v) sqrt(mean(v^2, na.rm = na.rm)))
critical_factor <- qnorm(1 - significance_level/2)
ci_left <- beta - critical_factor * beta_se
ci_right <- beta + critical_factor * beta_se
coverage_prob <- apply((ci_left < beta_true_array) & (ci_right > beta_true_array),
c(1,2), mean, na.rm = na.rm)
critical_factor_adj <- qt(1 - significance_level/2, df = sample_size - 1 - q)
ci_left_adj <- beta - critical_factor_adj * beta_se_adjusted
ci_right_adj <- beta + critical_factor_adj * beta_se_adjusted
coverage_prob_adj <- apply((ci_left_adj < beta_true_array) & (ci_right_adj > beta_true_array),
c(1,2), mean, na.rm = na.rm)
return(list(bias = bias, sd = sd, rmse = rmse, coverage_prob = coverage_prob, coverage_prob_adjusted = coverage_prob_adj))
}
library(foreach)
library(doMC)
library(doRNG)
max_cores <- 16
registerDoMC(min(detectCores() - 1, max_cores))
source("estimators.R")
data_generating_process <- dgm_binary_ar1_covariate
# control_vars <- c("Z", "Y_lag1")
# control_vars <- c("Y_lag1")
control_vars <- c("Z")
moderator_vars <- NULL
nsim <- 1000
sample_sizes <- c(50)
# total_Ts <- c(10, 30)
total_Ts <- c(20)
# sample_sizes <- c(100)
# total_Ts <- c(30)
etas <- c(-0.5, 0, 0.5)
# etas <- -0.5
gammas <- seq(from = 0.1, to = 0.5, by = 0.1)
design <- expand.grid(sample_sizes, total_Ts, etas, gammas)
names(design) <- c("sample_size", "total_T", "eta", "gamma")
result_df_beta0_collected <- result_df_beta1_collected <- data.frame()
for (i_design in 1:nrow(design)) {
# for (i_design in 4:4) {
print(i_design)
sample_size <- design$sample_size[i_design]
total_T <- design$total_T[i_design]
eta <- design$eta[i_design]
gamma <- design$gamma[i_design]
set.seed(20190303)
writeLines(c(""), "~/Downloads/log.txt")
sink("~/Downloads/log.txt", append=FALSE)
result <- foreach(isim = 1:nsim, .combine = "c") %dorng% {
if (isim %% 10 == 0) {
cat(paste("Starting iteration",isim,"\n"))
}
dta <- data_generating_process(sample_size, total_T, eta, gamma, "expit")
fit_wcls <- weighted_centered_least_square(
dta = dta,
id_varname = "userid",
decision_time_varname = "day",
treatment_varname = "A",
outcome_varname = "Y",
control_varname = control_vars,
moderator_varname = moderator_vars,
rand_prob_varname = "prob_A",
rand_prob_tilde_varname = NULL,
rand_prob_tilde = 0.5,
estimator_initial_value = NULL
)
# fit_eif <- efficient_ee(
# dta = dta,
# id_varname = "userid",
# decision_time_varname = "day",
# treatment_varname = "A",
# outcome_varname = "Y",
# control_varname = control_vars,
# moderator_varname = moderator_vars,
# rand_prob_varname = "prob_A",
# estimator_initial_value = c(fit_wcls$alpha_hat, fit_wcls$beta_hat)
# )
fit_eif <- fit_wcls
fit_eif_modified <- efficient_ee_modified_weight(
dta = dta,
id_varname = "userid",
decision_time_varname = "day",
treatment_varname = "A",
outcome_varname = "Y",
control_varname = control_vars,
moderator_varname = moderator_vars,
rand_prob_varname = "prob_A",
estimator_initial_value = c(fit_wcls$alpha_hat, fit_wcls$beta_hat),
weight_threshold = 0.97
)
output <- list(list(fit_wcls = fit_wcls, fit_eif = fit_eif, fit_eif_modified = fit_eif_modified))
}
sink()
ee_names <- c("wcls", "eif", "eif_modified")
alpha_names <- c("Intercept", control_vars)
beta_names <- c("Intercept", moderator_vars)
num_estimator <- length(ee_names)
alpha <- simplify2array(lapply(result, function(l) matrix(c(l$fit_wcls$alpha_hat, l$fit_eif$alpha_hat, l$fit_eif_modified$alpha_hat),
nrow = length(ee_names), byrow = TRUE, dimnames = list(ee_names, alpha_names))))
alpha_se <- simplify2array(lapply(result, function(l) matrix(c(l$fit_wcls$alpha_se, l$fit_eif$alpha_se, l$fit_eif_modified$alpha_se),
nrow = length(ee_names), byrow = TRUE, dimnames = list(ee_names, alpha_names))))
alpha_se_adjusted <- simplify2array(lapply(result, function(l) matrix(c(l$fit_wcls$alpha_se_adjusted, l$fit_eif$alpha_se_adjusted, l$fit_eif_modified$alpha_se_adjusted),
nrow = length(ee_names), byrow = TRUE, dimnames = list(ee_names, alpha_names))))
beta <- simplify2array(lapply(result, function(l) matrix(c(l$fit_wcls$beta_hat, l$fit_eif$beta_hat, l$fit_eif_modified$beta_hat),
nrow = length(ee_names), byrow = TRUE, dimnames = list(ee_names, beta_names))))
beta_se <- simplify2array(lapply(result, function(l) matrix(c(l$fit_wcls$beta_se, l$fit_eif$beta_se, l$fit_eif_modified$beta_se),
nrow = length(ee_names), byrow = TRUE, dimnames = list(ee_names, beta_names))))
beta_se_adjusted <- simplify2array(lapply(result, function(l) matrix(c(l$fit_wcls$beta_se_adjusted, l$fit_eif$beta_se_adjusted, l$fit_modified$beta_se_adjusted),
nrow = length(ee_names), byrow = TRUE, dimnames = list(ee_names, beta_names))))
result <- compute_result_beta(beta_0_true, beta, beta_se, beta_se_adjusted, moderator_vars, control_vars, significance_level = 0.05)
result_df_beta0 <- data.frame(ss = rep(sample_size, num_estimator),
total_T = rep(total_T, num_estimator),
eta = rep(eta, num_estimator),
gamma = rep(gamma, num_estimator),
est = ee_names,
bias = result$bias[, "Intercept"],
sd = result$sd[, "Intercept"],
rmse = result$rmse[, "Intercept"],
cp.unadj = result$coverage_prob[, "Intercept"],
cp.adj = result$coverage_prob_adjusted[, "Intercept"])
names(result_df_beta0) <- c("ss", "total_T", "eta", "gamma", "est", "bias", "sd", "rmse", "cp.unadj", "cp.adj")
rownames(result_df_beta0) <- NULL
result_df_beta0_collected <- rbind(result_df_beta0_collected, result_df_beta0)
}
result_df_beta0_collected
save.image("simulation_20190303_evaluate efficiency gain along one dim submodel(expit).rda")
rm(list = ls())
load("simulation_20190303_evaluate efficiency gain along one dim submodel(exp).rda")
design$RE_beta0 <- NA
for (i_design in 1:nrow(design)) {
design$RE_beta0[i_design] <- (result_df_beta0_collected$sd[3 * i_design - 2] / result_df_beta0_collected$sd[3 * i_design])^2
}
design$link <- "q-exp"
design_exp <- design
load("simulation_20190303_evaluate efficiency gain along one dim submodel(expit).rda")
design$RE_beta0 <- NA
for (i_design in 1:nrow(design)) {
design$RE_beta0[i_design] <- (result_df_beta0_collected$sd[3 * i_design - 2] / result_df_beta0_collected$sd[3 * i_design])^2
}
design$link <- "q-expit"
design_expit <- design
design <- rbind(design_exp, design_expit)
design$sample_size <- NULL
design$total_T <- NULL
design <- subset(design, gamma == 0.10 | gamma == 0.50 | (gamma > 0.29 & gamma < 0.31))
library(ggplot2)
library(reshape2)
# p <- ggplot(design, aes(x = rand_prob, y = RE_beta1)) + geom_point()
# p + facet_grid(vars(sample_size), vars(total_T))
design_ggplot <- melt(design, id.vars = c("eta", "gamma", "link"))
p <- ggplot(design, aes(x = gamma, y = RE_beta0, color = factor(eta))) + geom_line()
p + facet_grid(. ~ link) +
scale_color_manual(name = expression(eta),
values = c("#000000", "#E69F00", "#56B4E9")) +
xlab(expression(gamma)) +
ylab("relative efficiency") +
theme_bw()
ggsave("simulation_20190303_evaluate efficiency gain along one dim submodel.png",
width = 4, height = 2)