We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
1 parent d64ff57 commit 890152fCopy full SHA for 890152f
src/reward_preprocessing/interpret.py
@@ -290,6 +290,8 @@ def param_f():
290
)
291
# Now, we put the latent vector thru the generator to produce transition
292
# tensors that we can get observations, actions, etc out of
293
+ assert opt_latent.shape[1] == 1
294
+ assert opt_latent.shape[2] == 1
295
squeeze_shape = [opt_latent.shape[0], opt_latent.shape[3]]
296
opt_latent = opt_latent.reshape(squeeze_shape)
297
# ^ squeeze out extraneous "height" and "width" dimensions
0 commit comments