-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
75 lines (62 loc) · 2.04 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import os
import sys
import torch
import torch.nn.functional as F
from torch.utils.data import DataLoader
import torch_geometric
from tqdm import tqdm
from easydict import EasyDict
import yaml
from data import Lightning_Dataset
from net.lightning_model import Lightning_WavePE_AutoEncoder
from lightning import Trainer, seed_everything
from lightning.pytorch import loggers, callbacks
import warnings
warnings.filterwarnings("ignore")
with open("config/pretrain.yml", "r") as f:
dict_config = yaml.safe_load(f)
config = EasyDict(dict_config)
## fix random seed for reproducibility ##
seed_everything(config.seed, workers = True)
torch.set_float32_matmul_precision(config.precision)
datamodule = Lightning_Dataset(config)
model = Lightning_WavePE_AutoEncoder(config)
#model = Lightning_WavePE_AutoEncoder.load_from_checkpoint(config.ckpt_path)
#### set up ####
if config.debug:
logger_list = []
else:
logger_list = [
loggers.WandbLogger(
save_dir = config.output_dir,
project = config.wandb_project,
config= dict_config,
log_model = False,
)
]
ckpt_name = f"{config.data_name}_" + "{epoch:02d}_{train_loss:.3f}_{val_loss:.3f}_{val_best_loss:.3f}"
ckpt_dirpath = os.path.join(config.output_dir, f"ckpts/{config.data_name}_{config.version}")
os.makedirs(ckpt_dirpath, exist_ok=True)
callback_list = [
callbacks.RichModelSummary(),
callbacks.RichProgressBar(),
callbacks.ModelCheckpoint(
dirpath = ckpt_dirpath,
filename = ckpt_name,
monitor = "val_best_loss",
verbose = True,
save_top_k = config.num_ckpts,
save_weights_only = False,
save_last = False,
every_n_epochs = config.save_every_n_epochs
)
]
trainer = Trainer(
accelerator = "gpu",
devices = [int(d) for d in config.device_ids.split(",")],
max_epochs = config.num_epoch,
default_root_dir = config.output_dir,
logger = logger_list,
callbacks = callback_list,
)
trainer.fit(model, datamodule, ckpt_path = config.ckpt_path)