-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_image.py
132 lines (106 loc) · 5.13 KB
/
train_image.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import argparse
import torch
import torch.nn.functional as F
from torch.optim.lr_scheduler import ReduceLROnPlateau
from torch_geometric.datasets import ZINC
from torch_geometric.loader import DataLoader
from torch_geometric.utils import degree
import transformers
import torch_geometric.transforms as T
from torch_geometric.datasets import MNISTSuperpixels, GNNBenchmarkDataset
from tqdm import tqdm
import time
from transform import WaveletTransform
from utils.commons import load_config
from utils.metrics import MAE
from net.gnn_zinc import GNN_VirtualNode, GNN, GraphTransformer
parser = argparse.ArgumentParser()
parser.add_argument("--dataset", type = str, default = "mnist")
parser.add_argument("--model_type", type = str, default = "gnn_vn")
parser.add_argument("--num_layer", type = int, default = 5)
parser.add_argument("--local_gnn_type", type = str, default = "transformer_conv")
parser.add_argument("--atom_dim", type = int, default = 512)
parser.add_argument("--bond_dim", type = int, default = 512)
parser.add_argument("--scheduler", type = str, default = "cosine_with_warmup")
parser.add_argument("--warmup_steps", type = int, default = 10)
parser.add_argument("--num_epoch", type = int, default = 1000)
parser.add_argument("--no_concat", action="store_false", dest = "concat")
parser.add_argument("--learnable", action = "store_true", dest = "learnable")
parser.add_argument("--no_freeze", action = "store_false", dest = 'freeze')
parser.add_argument("--no_residual", action = "store_false", dest = "residual")
parser.add_argument("--lr", type =float, default = 1e-3)
parser.add_argument("--batch_size", type = int, default = 128)
parser.add_argument("--ckpt_pos_encoder_path", type = str)
parser.add_argument("--dropout", type = float, default = 0.1)
parser.add_argument("--attn_dropout", type = float, default = 0.5)
parser.add_argument('--not_use_full_graph', action="store_false", dest = "use_full_graph")
args = parser.parse_args()
print(args.concat)
pretrained_config = load_config(f"config/pretrain.yml")
pre_transform = WaveletTransform(pretrained_config.scales, approximation_order=pretrained_config.approximation_order, tolerance=pretrained_config.tolerance)
path = "/cm/shared/khangnn4/WavePE/data/"
transform = T.Cartesian(cat=False)
train_dataset= GNNBenchmarkDataset(root = path, name = args.dataset, split = 'train', pre_transform=pre_transform)
val_dataset= GNNBenchmarkDataset(root = path, name = args.dataset, split = 'val', pre_transform=pre_transform)
test_dataset= GNNBenchmarkDataset(root = path, name = args.dataset, split = 'test', pre_transform=pre_transform)
train_loader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size =args.batch_size)
test_loader = DataLoader(test_dataset, batch_size=args.batch_size)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
if args.model_type == "gnn":
model = GNN(args, out_dim = 10).to(device)
elif args.model_type == "gnn_vn":
model = GNN_VirtualNode(args, out_dim = 10).to(device)
elif args.model_type == "GT":
model = GraphTransformer(args, out_dim = 10).to(device)
else:
raise NotImplemented
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)
if args.scheduler == "reduce_on_plateau":
scheduler = ReduceLROnPlateau(optimizer, mode='min', factor=0.5, patience=50,
min_lr=1e-6, verbose=True)
elif args.scheduler == "cosine_with_warmup":
scheduler = transformers.optimization.get_cosine_schedule_with_warmup(optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=args.num_epoch)
print(f"Model: ", args.model_type)
print(f"Local GNN: ", args.local_gnn_type)
print("Number of parameters: ", model.num_trainable_parameters)
def train(epoch):
model.train()
if epoch == 16:
for param_group in optimizer.param_groups:
param_group['lr'] = 0.001
if epoch == 26:
for param_group in optimizer.param_groups:
param_group['lr'] = 0.0001
total_loss = 0
for idx, data in enumerate(tqdm(train_loader, total = len(train_loader))):
data = data.to(device)
optimizer.zero_grad()
#out = F.log_softmax(model(data), dim = 1)
out = model(data)
loss = F.cross_entropy(out, data.y)
loss.backward()
optimizer.step()
total_loss += loss.item() * data.num_graphs
return total_loss / len(train_dataset)
def test(loader):
model.eval()
correct = 0
for data in loader:
data = data.to(device)
pred = model(data).max(1)[1]
correct += pred.eq(data.y).sum().item()
return correct / len(test_dataset)
best_test = 0
best_val = 0
for epoch in range(1, args.num_epoch):
train_loss = train(epoch)
val_acc = test(val_loader)
test_acc = test(test_loader)
scheduler.step()
if val_acc > best_val:
best_val = val_acc
best_test = test_acc
print(f'Epoch: {epoch:02d}, Loss: {train_loss:.4f}, Val: {val_acc:4f}, Test: {test_acc:.4f}, Best Test: {best_test:.4f}\n')
print("****** \ ******")
print(f"Dataset: {args.dataset} | Model Type: {args.model_type} | Local GNN Type: {args.local_gnn_type} | Best Acc: {best_test:.4f}")