-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_tu.py
151 lines (118 loc) · 5.49 KB
/
train_tu.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import argparse
import torch
import torch.nn.functional as F
from torch.optim.lr_scheduler import ReduceLROnPlateau
from torch_geometric.datasets import ZINC
from torch_geometric.loader import DataLoader
from torch_geometric.utils import degree
import transformers
import torch_geometric.transforms as T
from torch_geometric.datasets import TUDataset
from tqdm import tqdm
import time
from transform import WaveletTransform
from utils.commons import load_config
from utils.metrics import MAE
from net.gnn_tu import GNN, GNN_VirtualNode, DeepWaveletNetwork
from sklearn.model_selection import KFold, StratifiedKFold
import numpy as np
parser = argparse.ArgumentParser()
parser.add_argument("--dataset", type = str, default = "mnist")
parser.add_argument("--model_type", type = str, default = "gnn_vn")
parser.add_argument("--num_layer", type = int, default = 5)
parser.add_argument("--local_gnn_type", type = str, default = "transformer_conv")
parser.add_argument("--atom_dim", type = int, default = 512)
parser.add_argument("--bond_dim", type = int, default = 512)
parser.add_argument("--scheduler", type = str, default = "cosine_with_warmup")
parser.add_argument("--warmup_steps", type = int, default = 10)
parser.add_argument("--num_epoch", type = int, default = 1000)
parser.add_argument("--no_concat", action="store_false", dest = "concat")
parser.add_argument("--learnable", action = "store_true", dest = "learnable")
parser.add_argument("--no_freeze", action = "store_false", dest = 'freeze')
parser.add_argument("--no_residual", action = "store_false", dest = "residual")
parser.add_argument("--lr", type =float, default = 1e-3)
parser.add_argument("--batch_size", type = int, default = 128)
parser.add_argument("--ckpt_pos_encoder_path", type = str)
parser.add_argument("--dropout", type = float, default = 0.1)
parser.add_argument("--attn_dropout", type = float, default = 0.5)
parser.add_argument('--not_use_full_graph', action="store_false", dest = "use_full_graph")
args = parser.parse_args()
print(args.concat)
pretrained_config = load_config(f"config/pretrain.yml")
pre_transform = WaveletTransform(pretrained_config.scales, approximation_order=pretrained_config.approximation_order, tolerance=pretrained_config.tolerance)
path = "/cm/shared/khangnn4/WavePE/data/"
class RandomFeature:
def __call__(self, data):
data.x = torch.randn(data.num_nodes, 10)
return data
if args.dataset in ["IMDB-BINARY", "COLLAB", "IMDB-MULTI"]:
transform = RandomFeature()
else:
transform = None
dataset = TUDataset(
path,
name = args.dataset,
transform=transform,
pre_transform=pre_transform
)
#out_dim = 3 if args.dataset in ['COLLAB', 'PROTEINS'] else 2
out_dim = dataset.num_classes
def train(epoch):
model.train()
total_loss = 0
for idx, data in enumerate(tqdm(train_loader, total = len(train_loader))):
data = data.to(device)
optimizer.zero_grad()
out = F.log_softmax(model(data), dim = 1)
#out = model(data)
#loss = F.cross_entropy(out, data.y)
loss = F.nll_loss(out, data.y.view(-1))
loss.backward()
optimizer.step()
total_loss += loss.item() * data.num_graphs
return total_loss / len(train_dataset)
@torch.no_grad()
def test(loader, test_dataset):
model.eval()
correct = 0
for idx, data in enumerate(tqdm(loader, total = len(loader))):
data = data.to(device)
pred = model(data).max(1)[1]
correct += pred.eq(data.y.view(-1)).sum().item()
# pred = model(data).argmax(dim = -1)
# correct += int((pred == data.y).sum())
return correct / len(test_dataset)
if __name__=="__main__":
n_splits = 2
folds = 10
kf = StratifiedKFold(n_splits=10, shuffle=True, random_state=12345)
all_acc = []
for train_index, test_index in kf.split(torch.zeros(len(dataset)), dataset.data.y):
test_dataset = dataset[test_index]
train_dataset = dataset[train_index]
train_loader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=args.batch_size)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
if args.model_type == "gnn_vn":
model = GNN_VirtualNode(args, out_dim = out_dim).to(device)
else:
model = GNN(args, out_dim = out_dim).to(device)
optimizer = torch.optim.Adam(model.parameters(), lr = 1e-3)
if args.scheduler == "reduce_on_plateau":
scheduler = ReduceLROnPlateau(optimizer, mode='min', factor=0.5, patience=50,
min_lr=1e-6, verbose=True)
elif args.scheduler == "cosine_with_warmup":
scheduler = transformers.optimization.get_cosine_schedule_with_warmup(optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=args.num_epoch)
best_test = 0
for epoch in range(1, args.num_epoch):
train_loss = train(epoch)
test_acc = test(test_loader, test_dataset)
if test_acc > best_test:
best_test = test_acc
scheduler.step()
print(f'Epoch: {epoch:02d}, Loss: {train_loss:.4f}, Test: {test_acc:.4f}, Best Test: {best_test:.4f}\n')
print("****** \ ******")
print(f"Dataset: {args.dataset} | Model Type: {args.model_type} | Local GNN Type: {args.local_gnn_type} | Best Acc: {best_test:.4f}")
all_acc.append(best_test)
print("Average accuracy: ", np.mean(all_acc))
print("Std: ", np.std(all_acc))