-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_zinc.py
126 lines (106 loc) · 5.1 KB
/
train_zinc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import argparse
import torch
import torch.nn.functional as F
from torch.optim.lr_scheduler import ReduceLROnPlateau
from torch_geometric.datasets import ZINC
from torch_geometric.loader import DataLoader
from torch_geometric.utils import degree
import transformers
import time
from transform import WaveletTransform
from utils.commons import load_config
from utils.metrics import MAE
from net.gnn_zinc import GNN_VirtualNode, GNN, GraphTransformer, GPS
parser = argparse.ArgumentParser()
parser.add_argument("--dataset", type = str, default = "zinc")
parser.add_argument("--model_type", type = str, default = "gnn_vn")
parser.add_argument("--num_layer", type = int, default = 5)
parser.add_argument("--local_gnn_type", type = str, default = "transformer_conv")
parser.add_argument("--atom_dim", type = int, default = 512)
parser.add_argument("--bond_dim", type = int, default = 512)
parser.add_argument("--scheduler", type = str, default = "cosine_with_warmup")
parser.add_argument("--warmup_steps", type = int, default = 10)
parser.add_argument("--num_epoch", type = int, default = 1000)
parser.add_argument("--no_concat", action="store_false", dest = "concat")
parser.add_argument("--learnable", action = "store_true", dest = "learnable")
parser.add_argument("--no_freeze", action = "store_false", dest = 'freeze')
parser.add_argument("--no_residual", action = "store_false", dest = "residual")
parser.add_argument("--lr", type =float, default = 1e-3)
parser.add_argument("--batch_size", type = int, default = 128)
parser.add_argument("--ckpt_pos_encoder_path", type = str)
parser.add_argument("--dropout", type = float, default = 0.1)
parser.add_argument("--attn_dropout", type = float, default = 0.5)
parser.add_argument('--not_use_full_graph', action="store_false", dest = "use_full_graph")
parser.add_argument("--val_batch_size", type = int, default = 64)
args = parser.parse_args()
print(args.concat)
pretrained_config = load_config(f"config/pretrain.yml")
transform = WaveletTransform(pretrained_config.scales, approximation_order=pretrained_config.approximation_order, tolerance=pretrained_config.tolerance)
path = "/cm/shared/khangnn4/WavePE/data/zinc"
train_dataset = ZINC(path, subset=True, split='train', pre_transform=transform)
val_dataset = ZINC(path, subset=True, split='val', pre_transform=transform)
test_dataset = ZINC(path, subset=True, split='test', pre_transform=transform)
train_loader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True, num_workers=0)
val_loader = DataLoader(val_dataset, batch_size=args.val_batch_size, num_workers=0)
test_loader = DataLoader(test_dataset, batch_size=args.val_batch_size, num_workers=0)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
if args.model_type == "gnn":
model = GNN(args, out_dim = 1).to(device)
elif args.model_type == "gnn_vn":
model = GNN_VirtualNode(args, out_dim = 1).to(device)
elif args.model_type == "GT":
attn_kwargs = {'dropout': 0.5}
model = GPS(args, channels=64, pe_dim=20, num_layers=10, attn_type="multihead",
attn_kwargs=attn_kwargs).to(device)
else:
raise NotImplemented
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr, weight_decay=1e-5)
if args.scheduler == "reduce_on_plateau":
scheduler = ReduceLROnPlateau(optimizer, mode='min', factor=0.5, patience=20,
min_lr=0.00001, verbose=True)
elif args.scheduler == "cosine_with_warmup":
scheduler = transformers.optimization.get_cosine_schedule_with_warmup(optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=args.num_epoch)
print(f"Model: ", args.model_type)
print(f"Local GNN: ", args.local_gnn_type)
print("Number of parameters: ", model.num_trainable_parameters)
def train(epoch):
model.train()
total_loss = 0
for data in train_loader:
data = data.to(device)
optimizer.zero_grad()
model.redraw_projection.redraw_projections()
out = model(data)
loss = (out.squeeze() - data.y).abs().mean()
loss.backward()
total_loss += loss.item() * data.num_graphs
# if args.model_type == "GT":
# torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0)
optimizer.step()
return total_loss / len(train_loader.dataset)
@torch.no_grad()
def test(loader):
model.eval()
total_mae = 0
total_loss = 0
for i, data in enumerate(loader):
data = data.to(device)
out = model(data)
loss = (out.squeeze() - data.y).abs().mean()
total_loss += loss.item() * data.num_graphs
total_mae += MAE(out.view(-1), data.y.view(-1))
return total_mae / (i + 1), total_loss / len(loader.dataset)
for epoch in range(1, args.num_epoch):
start = time.time()
loss = train(epoch)
val_loss, val_mae = test(val_loader)
test_loss, test_mae = test(test_loader)
end = time.time()
if args.scheduler == "cosine_with_warmup":
scheduler.step()
elif args.scheduler == "reduce_on_plateau":
scheduler.step(val_loss)
else:
pass
print(f'Epoch: {epoch:02d}, Loss: {loss:.4f}, Val: {val_loss:.4f}, '
f'Test: {test_loss:.4f}, Time: {end - start:.4f}')