forked from SIMEXP/ukbb-scripts
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy path4.1_runMultiSubjects.py
executable file
·245 lines (194 loc) · 10.8 KB
/
4.1_runMultiSubjects.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
import json
import subprocess
import os
from multiprocessing.pool import Pool
import time
from dotenv import load_dotenv
def gen_slurm_batch(subject1, subject2, subject3, subject4, subject5, subject6, jobName, scratch_path, email, timeout="38:00:00"):
core = str(6)
slurm_batch = f"""#!/bin/bash
#SBATCH --account=rrg-pbellec
#SBATCH --job-name=fmriprep_{jobName}.job
#SBATCH --output={scratch_path}/ukbb/slurm_logs_multisubjects/fmriprep_{jobName}.out
#SBATCH --error={scratch_path}/ukbb/slurm_logs_multisubjects/fmriprep_{jobName}.err
#SBATCH --time={timeout}
#SBATCH --cpus-per-task={core}
#SBATCH --mem-per-cpu=3968M
#SBATCH --mail-user={email}
#SBATCH --mail-type=FAIL
function run_subject {{
export SINGULARITYENV_FS_LICENSE=$HOME/.freesurfer.txt
export SINGULARITYENV_TEMPLATEFLOW_HOME=/templateflow
module load singularity/3.8
export subject=$1
#clear previous job status
rm {scratch_path}/ukbb/FAILED/${{subject}} -f
rm {scratch_path}/ukbb/COMPLETED/${{subject}} -f
rm {scratch_path}/ukbb/COMPLETED/${{subject}} -f
#copying input dataset into local scratch space
mkdir -p ${{SLURM_TMPDIR}}/${{subject}}/ukbb/${{subject}}/
rsync -rlt --exclude "*.tar.gz" {scratch_path}/ukbb/dataset_template/ ${{SLURM_TMPDIR}}/${{subject}}/ukbb/
rsync -rlt {scratch_path}/ukbb/ukbb_bids/${{subject}}/ ${{SLURM_TMPDIR}}/${{subject}}/ukbb/${{subject}}/
rsync -rlt {scratch_path}/ukbb/bids_filters.json $SLURM_TMPDIR/${{subject}}/bids_filters.json
cd ${{SLURM_TMPDIR}}
singularity run --cleanenv -B ${{SLURM_TMPDIR}}/${{subject}}:/DATA -B ${{HOME}}/.cache/templateflow:/templateflow -B /etc/pki:/etc/pki/ /lustre03/project/6003287/containers/fmriprep-20.2.7lts.sif -w /DATA/fmriprep_work --participant-label ${{subject}} --output-spaces MNI152NLin2009cAsym MNI152NLin6Asym --output-layout bids --notrack --write-graph --omp-nthreads 1 --nprocs 1 --mem_mb 3712 --bids-filter-file /DATA/bids_filters.json --ignore slicetiming --random-seed 0 /DATA/ukbb /DATA/ukbb/derivatives/fmriprep participant
fmriprep_exitcode=$?
if [ $fmriprep_exitcode -ne 0 ]
then
rm {scratch_path}/ukbb/workdir/fmriprep_${{subject}}.workdir -rf
mkdir -p {scratch_path}/ukbb/workdir/fmriprep_${{subject}}.workdir
rsync -rlt $SLURM_TMPDIR/${{subject}}/fmriprep_work/ {scratch_path}/ukbb/workdir/fmriprep_${{subject}}.workdir
rsync -rlt $SLURM_TMPDIR/${{subject}}/ukbb/derivatives/ {scratch_path}/ukbb/workdir/fmriprep_${{subject}}.workdir/
touch {scratch_path}/ukbb/FAILED/${{subject}}
fi
if [ $fmriprep_exitcode -eq 0 ]
then
mkdir -p $SLURM_TMPDIR/${{subject}}/tar/
cd $SLURM_TMPDIR/${{subject}}/ukbb/derivatives/
tar -cf $SLURM_TMPDIR/${{subject}}/tar/${{subject}}_fmriprep.tar fmriprep/
cd {scratch_path}/ukbb/.slurm/
tar -uf $SLURM_TMPDIR/${{subject}}/tar/${{subject}}_fmriprep.tar fmriprep_${{subject}}.sh
cd {scratch_path}/ukbb/slurm_logs/
tar -uf $SLURM_TMPDIR/${{subject}}/tar/${{subject}}_fmriprep.tar fmriprep_${{subject}}.out
cd {scratch_path}/ukbb/slurm_logs/
tar -uf $SLURM_TMPDIR/${{subject}}/tar/${{subject}}_fmriprep.tar fmriprep_${{subject}}.err
cd $SLURM_TMPDIR/${{subject}}/tar/
gzip -f $SLURM_TMPDIR/${{subject}}/tar/${{subject}}_fmriprep.tar
rsync -rlt $SLURM_TMPDIR/${{subject}}/tar/${{subject}}_fmriprep.tar.gz {scratch_path}/ukbb/fmriprep/
touch {scratch_path}/ukbb/COMPLETED/${{subject}}
fi
return $fmriprep_exitcode
}}
echo "Launching subjects {subject1}_{subject2}_{subject3}_{subject4}_{subject5}_{subject6}";
module load singularity/3.8
run_subject {subject1} 2>{scratch_path}/ukbb/slurm_logs/fmriprep_{subject1}.err 1>{scratch_path}/ukbb/slurm_logs/fmriprep_{subject1}.out &
run_subject {subject2} 2>{scratch_path}/ukbb/slurm_logs/fmriprep_{subject2}.err 1>{scratch_path}/ukbb/slurm_logs/fmriprep_{subject2}.out &
run_subject {subject3} 2>{scratch_path}/ukbb/slurm_logs/fmriprep_{subject3}.err 1>{scratch_path}/ukbb/slurm_logs/fmriprep_{subject3}.out &
run_subject {subject4} 2>{scratch_path}/ukbb/slurm_logs/fmriprep_{subject4}.err 1>{scratch_path}/ukbb/slurm_logs/fmriprep_{subject4}.out &
run_subject {subject5} 2>{scratch_path}/ukbb/slurm_logs/fmriprep_{subject5}.err 1>{scratch_path}/ukbb/slurm_logs/fmriprep_{subject5}.out &
run_subject {subject6} 2>{scratch_path}/ukbb/slurm_logs/fmriprep_{subject6}.err 1>{scratch_path}/ukbb/slurm_logs/fmriprep_{subject6}.out &
FAIL=0
for job in `jobs -p`
do
echo $job
wait $job || let "FAIL+=1"
done
echo "End of multisubject slurm script with $FAIL failed job.";
echo "Subjects {subject1}_{subject2}_{subject3}_{subject4}_{subject5}_{subject6}";
exit $FAIL
"""
with open(f"{scratch_path}/ukbb/.slurm_multisubjects/fmriprep_{jobName}.sh", "w") as f:
f.write(slurm_batch)
return slurm_batch
if __name__ == "__main__":
load_dotenv()
scratch_path=os.getenv('SCRATCH_PATH')
batch_size=int(os.getenv('BATCH_SIZE'))
max_jobs_count=int(os.getenv('MAX_JOBS_COUNT'))
username=os.getenv('USERNAME')
email=os.getenv('SLURM_EMAIL')
with open(os.path.join(scratch_path,"ukbb","scripts","data","json_stats.json"), "r") as json_file:
json_stats = json.load(json_file)
print("[fMRI stats] noJSON: ",len(json_stats["noJSON"]), "wrongSliceTiming: ",len(json_stats["wrongSliceTiming"]), "validJSON: ",len(json_stats["validJSON"]))
print("[fMRI stats] total entries for beluga: ",len(json_stats["noJSON"])+len(json_stats["validJSON"]))#+len(json_stats["wrongSliceTiming"]))
ukbb_subjects = json_stats["validJSON"] + json_stats["noJSON"]# + json_stats["wrongSliceTiming"]
output_path = os.path.join(scratch_path,"ukbb","ukbb_bids")
archived_subjects_path = os.path.join(scratch_path,"ukbb","scripts","data","archived_subjects.json")
with open(archived_subjects_path,"r") as json_file:
archived_subjects = json.load(json_file)
effective_batch = []
for sub in os.listdir(output_path):
if sub in ukbb_subjects and sub not in archived_subjects :
effective_batch.append(sub)
effective_batch_size = len(effective_batch)
#####################################################
# Run slurm batches #
#####################################################
print(f"Launching {effective_batch_size} slurm batches...")
script_path = os.path.join(scratch_path,"ukbb","scripts")
slurm_jobs_path = os.path.join(script_path,"data","slurm_jobs.json")
if os.path.isfile(slurm_jobs_path):
with open(slurm_jobs_path,"r") as json_file:
slurm_jobs = json.load(json_file)
else:
slurm_jobs = {}
job_history_path = os.path.join(script_path,"data","job_history.json")
if os.path.isfile(job_history_path):
with open(job_history_path,"r") as json_file:
job_history = json.load(json_file)
else:
job_history = {}
print(subprocess.check_output(f"cd {script_path}; python stats.py", shell=True, text=True))
subjects_state_path = os.path.join(script_path,"data","subjects_state.json")
with open(subjects_state_path,"r") as json_file:
subjects_state = json.load(json_file)
active_jobs_count = int(subprocess.check_output(f"squeue -u {username} | wc -l", shell=True, text=True))-1
print(f"There are {active_jobs_count} active jobs")
jobs_count = active_jobs_count
queue = []
i = 0
for subject in effective_batch:
if jobs_count>=max_jobs_count:
break
if len(queue) == 6:
jobName = (queue[0].replace("sub-","") + queue[1] + queue[2] + queue[3] + queue[4]+ queue[5]).replace("sub-","_")
gen_slurm_batch(queue[0],queue[1],queue[2],queue[3],queue[4],queue[5],jobName, scratch_path, email)
slurm_cmd = f"sbatch {scratch_path}/ukbb/.slurm_multisubjects/fmriprep_{jobName}.sh"
try:
sbatch_output = subprocess.check_output(slurm_cmd, shell=True, text=True)
except subprocess.CalledProcessError as e:
if sbatch_output is not None:
print("ERROR: Subprocess call output: %s" % sbatch_output)
raise e
print(sbatch_output)
if "Submitted batch job" in sbatch_output:
slurm_jobs[queue[0]] = int(sbatch_output.split(" ")[-1])
slurm_jobs[queue[1]] = int(sbatch_output.split(" ")[-1])
slurm_jobs[queue[2]] = int(sbatch_output.split(" ")[-1])
slurm_jobs[queue[3]] = int(sbatch_output.split(" ")[-1])
slurm_jobs[queue[4]] = int(sbatch_output.split(" ")[-1])
slurm_jobs[queue[5]] = int(sbatch_output.split(" ")[-1])
jobs_count += 1
job_history[str(int(sbatch_output.split(" ")[-1]))] = queue
else:
print(f"Failed to launch subject {subject}")
slurm_jobs[queue[0]] = -1
slurm_jobs[queue[1]] = -1
slurm_jobs[queue[2]] = -1
slurm_jobs[queue[3]] = -1
slurm_jobs[queue[4]] = -1
slurm_jobs[queue[5]] = -1
queue = []
if subject in subjects_state:
last_job = max(subjects_state[subject])
state = subjects_state[subject][last_job]
if state in ["NODE_FAIL"]:
pass
elif state in ["CANCELLED+"]:
pass
elif state in ["TIMEOUT"]:
print(f"Subject {subject} timeout, relaunching needed with longer timeout!")
continue
elif state in ["FAILED"]:
print(f"Subject {subject} failed, investigation needed!")
continue
elif state in ["PENDING", "RUNNING", "COMPLETED", "ARCHIVED"]:
continue
else:
print(f"unknow state {state} for subject {subject}")
continue
queue.append(subject)
if i % 500 == 0:
print("",i,"/",len(effective_batch), "slurm batches launched (",100*(i/len(effective_batch)) ,"%)")
i += 1
if len(queue) != 0:
print("Residuals subject are left in the queue!", queue)
active_jobs_count = int(subprocess.check_output(f"squeue -u {username} | wc -l", shell=True, text=True))-1
print(f"There are now {active_jobs_count} active jobs")
with open(slurm_jobs_path,"w") as json_file:
json.dump(slurm_jobs, json_file, indent=4)
with open(job_history_path,"w") as json_file:
json.dump(job_history, json_file, indent=4)
print("All slurm batches launched!")
time.sleep(3)
print(subprocess.check_output(f"cd {script_path}; python stats.py", shell=True, text=True))