-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmutspecStat.pl
2767 lines (2267 loc) · 137 KB
/
mutspecStat.pl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#!/usr/bin/env perl
#-----------------------------------#
# Author: Maude #
# Script: mutspecStat.pl #
# Last update: 09/02/17 #
#-----------------------------------#
use strict;
use warnings;
use Getopt::Long;
use Pod::Usage;
use File::Basename; # my ($filename, $directories, $suffix) = fileparse($file, qr/\.[^.]*/);
use File::Path;
use Spreadsheet::WriteExcel;
our ($verbose, $man, $help) = (0, 0, 0); # Parse options and print usage if there is a syntax error, or if usage was explicitly requested.
our ($refGenome, $output, $folder_temp, $path_R_Scripts, $path_SeqrefGenome) = ("empty", "empty", "empty", "empty", "empty", "empty"); # The reference genome to use; The path for saving the result; The path for saving the temporary files; The path to R scripts; The path to the fasta reference sequences
our ($poolData, $oneReportPerSample) = (2, 2); # If a folder is pass as input file pool all the data and generate the report on the pool and for each samples; # Generate one report for each samples
GetOptions('verbose|v'=>\$verbose, 'help|h'=>\$help, 'man|m'=>\$man, 'refGenome=s'=>\$refGenome, 'outfile|o=s' => \$output, 'temp=s' => \$folder_temp, 'pathRscript=s' => \$path_R_Scripts, 'pathSeqRefGenome=s' => \$path_SeqrefGenome, 'poolData' => \$poolData, 'reportSample' => \$oneReportPerSample) or pod2usage(2);
our ($input) = @ARGV;
pod2usage(-verbose=>1, -exitval=>1, -output=>\*STDERR) if ($help);
pod2usage(-verbose=>2, -exitval=>1, -output=>\*STDERR) if ($man);
pod2usage(-verbose=>0, -exitval=>1, -output=>\*STDERR) if(@ARGV == 0); # No argument is pass to the command line print the usage of the script
pod2usage(-verbose=>0, -exitval=>1, -output=>\*STDERR) if(@ARGV == 2); # Only one argument is expected to be pass to @ARGV (the input)
####### The input must be a folder with one or several annotated files
if(!-d $input)
{
print STDERR "Error: The input must be a Dataset List\n";
print STDERR "Even for 1 file, please create a Dataset List\n";
exit;
}
######################################################################################################################################################
# GLOBAL VARIABLES #
######################################################################################################################################################
# Recover the current path
our $pwd = `pwd`;
chomp($pwd);
# Path to R scripts
our $pathRscriptChi2test = "$path_R_Scripts/R/chi2test_MutSpecStat_Galaxy.r";
our $pathRScriptFigs = "$path_R_Scripts/R/figs_MutSpecStat_Galaxy.r";
our $pathRScriptTxnSB = "$path_R_Scripts/R/transciptionalStrandBias.r";
our $pathRScriptMutSpectrum = "$path_R_Scripts/R/mutationSpectra_Galaxy.r";
# The path for saving the files with enough mutations for calculating the statistics;
our $folderCheckedForStat = "$pwd/folder_checked";
if(!-e $folderCheckedForStat) { mkdir($folderCheckedForStat) or die "$!: $folderCheckedForStat\n"; }
# Output dir with all the results
our $folderMutAnalysis = "";
# Hash table with the length of each chromosomes
our %chromosomes;
# Define the name of the column containing the chromosome, start, ref and alt alleles (based on Annovar output)
our ($chr_name, $start_name, $ref_name, $alt_name) = qw(Chr Start Ref Alt);
# Annovar annotation used
our $func_name = "Func.refGene";
our $exonicFunc_name = "ExonicFunc.refGene";
our $strand_name = "Strand";
our $context_name = "context";
# Font formats
our ($format_A10, $format_A10Boldleft, $format_A10ItalicRed) = ("", "", "");
our ($formatT_left, $formatT_right, $formatT_bottomRight, $formatT_bottomLeft, $formatT_bottom, $formatT_bottomHeader, $formatT_bottomRightHeader, $formatT_bottomHeader2, $formatT_rightHeader);
our ($formatT_graphTitle);
our ($table_topleft, $table_topRight, $table_bottomleft, $table_bottomRight, $table_top, $table_right, $table_bottom, $table_bottomItalicRed, $table_left, $table_bottomrightHeader, $table_left2, $table_middleHeader, $table_middleHeader2);
# Hash table with the result of chi2 test for the strand bias
our %h_chi2 = ();
# For NMF input
our %h_inputNMF = ();
######################################################################################################################################################
# MAIN #
######################################################################################################################################################
# Check the presence of the flags and create the output and temp directories
CheckFlags();
# First check if the files are annotated or not.
# If the files are annotated check there is enough mutations for generating the statistics, otherwise remove the samples from the analysis
checkVariants();
# Retrieve chromosomes length
checkChrDir();
# Calculate the statistics and generate the report
ReportMutDist();
# Remove the temporary directory
rmtree($folder_temp);
rmtree($folderCheckedForStat);
######################################################################################################################################################
# FUNCTIONS #
######################################################################################################################################################
# Check the presence of the flags and create the output and temp directories
sub CheckFlags
{
# Check the reference genome
if($refGenome eq "empty")
{
print STDERR "Missing flag !\n";
print STDERR "You forget to specify the name for the reference genome!!!\nPlease specify it with the flag --refGenome\n";
exit;
}
# If no output is specified write the result as the same place as the input file
if($output eq "empty")
{
# The input is a folder with one or more annotated files
my $directory = dirname( $input );
$folderMutAnalysis = "$directory/Mutational_Analysis";
if(!-e $folderMutAnalysis) { mkdir($folderMutAnalysis) or die "$!: $folderMutAnalysis\n"; }
}
else
{
if(!-e $output) { mkdir($output) or die "$!: $output\n"; }
$folderMutAnalysis = "$output/Mutational_Analysis";
if(!-e $folderMutAnalysis) { mkdir($folderMutAnalysis) or die "$!: $folderMutAnalysis\n"; }
}
# If no temp folder is specified write the result in the current path
my ($filename, $directories, $suffix) = fileparse($input, qr/\.[^.]*/);
if($folder_temp eq "empty") { $folder_temp = "$pwd/TEMP_MutationalAnalysis_$filename"; }
if(!-e $folder_temp) { mkdir($folder_temp) or die "$!: $folder_temp\n"; }
# Check the path to the R scripts
if($path_R_Scripts eq "empty")
{
print STDERR "Missing flag !\n";
print STDERR "You forget to specify the path for the R scripts!!!\nPlease specify it with the flag --pathRscript\n";
exit;
}
foreach my $file (`ls $input/*`)
{
chomp($file);
## Verify the name of file, must be <= 31 chars for the sheet name
my ($filename, $directories, $suffix) = fileparse($file, qr/\.[^.]*/);
if(length($filename) > 31)
{
print STDERR "Error: The filename of: $file\nMust be <= 31 chars\nPlease modify it before running the script\n";
exit;
}
}
}
# Check input file(s)
sub checkVariants
{
# Count the number of file(s) with enough mutations (at least 1 with a strand orientation)
my $timerFile = 0;
my @listRemovedFile = ();
foreach my $file (`ls $input/*`)
{
chomp($file);
### Check if the file is annotated
my $testAnnotation = "toto";
$testAnnotation = `grep 'Func.refGene' $file`;
if($testAnnotation eq "toto")
{
print STDERR "Error: The input file you specify is not annotated!\nThe file concerned is: $file !!!!\nPlease first annotate your file before trying to generate the report on mutation spectra\n";
exit;
}
else
{
### check if there is at least 1 mutation with a strand info
my $strand_value = recoverNumCol($file, "Strand");
my $nbSBScoding = 0;
open(F1, $file) or die "$!: $file\n";
my $header = <F1>;
while(<F1>)
{
$_ =~ s/[\r\n]+$//;
my @tab = split("\t", $_);
if($tab[$strand_value] ne "NA")
{
$nbSBScoding++;
}
}
close F1;
if($nbSBScoding != 0)
{
$timerFile++;
`cp $file $folderCheckedForStat/`;
}
else
{
print STDOUT "\n\nWarning: There is no variant to compute statistics for $file\n\n";
push(@listRemovedFile, $file);
}
}
}
if($timerFile == 0)
{
print STDERR "\n\nError: No variants to compute statistics for:\n";
foreach (@listRemovedFile)
{
print STDERR $_."\n";
}
exit;
}
}
# Retrieve chromosomes length
sub checkChrDir
{
my @files = `ls $path_SeqrefGenome/$refGenome"_seq"/*.fa`;
foreach my $file (@files)
{
if ($file !~ /chr(\d+|x|y)\.fa/i){next;}
open(FILE,$file);
<FILE>;
my $seq="";
while (<FILE>){ chomp; $seq.=$_;}
$file =~ /chr(.*)\.fa/;
$chromosomes{"chr".$1}=length($seq);
}
}
# Calculate the statistics and generate the report
sub ReportMutDist
{
print STDOUT "-----------------------------------------------------------------\n";
print STDOUT "-----------------Report Mutational Analysis----------------------\n";
print STDOUT "-----------------------------------------------------------------\n";
my $folderFigure = "$folderMutAnalysis/Figures";
if(-e $folderFigure) { rmtree($folderFigure); mkdir($folderFigure) or die "Can't create the directory $folderFigure\n"; }
else { mkdir($folderFigure) or die "Can't create the directory $folderFigure\n"; }
my $folderChi2 = "$folderFigure/Chi2";
if(!-e $folderChi2) { mkdir($folderChi2) or die "Can't create the directory $folderChi2\n"; }
my $folderWebLogo = "$folderFigure/WebLogo";
if(!-e $folderWebLogo) { mkdir($folderWebLogo) or die "Can't create the directory $folderWebLogo\n"; }
my $folderNMF = "$folderFigure/Input_NMF";
if(!-e $folderNMF) { mkdir($folderNMF) or die "Can't create the directory $folderNMF\n"; }
################################################################################################
### Calculates all the statistics ###
################################################################################################
########### Recover the functional region for all the samples. Allows to thave the same annotations for the pie chart "Impact on protein sequence"
my @tab_func = recoverAnnovarAnnotation($func_name);
if(@tab_func == 0)
{
print STDERR "Error: the table for the functional region is empty!!!!! check $folderCheckedForStat\n$func_name\n";
exit;
}
############ Calculate the different statistics present in the report
my %h_file = ();
CalculateStatistics(\%h_file, \@tab_func);
############ Calculate the chi2 for the strand bias
CalculateChi2(\%h_file, $folderChi2);
############ Write the different statistics present in the report
WriteStatistics(\%h_file, $#tab_func, $folderFigure, $folderChi2, $folderNMF);
############ Create logo for studying the 10 flanking bases of the mutation
CreateLogo(\%h_file, $folderWebLogo);
}
# Calculate the different statistics present in the report
sub CalculateStatistics
{
my ($refH_file, $refT_func) = @_;
our ($chr_value, $start_value, $ref_value, $alt_value, $func_value, $exonicFunc_value, $strand_value, $contextSeq_value) = ("", "", "", "", "", "", "", "", "", "");
# Generate the pool of all the data
if($poolData == 1)
{
my @listFile = `ls $folderCheckedForStat`;
# For keeping the header only one time
chomp($listFile[0]);
system("cp $folderCheckedForStat/$listFile[0] $folderCheckedForStat/Pool_Data.txt");
open(OUT, ">>", "$folderCheckedForStat/Pool_Data.txt") or die "$!: $folderCheckedForStat/Pool_Data.txt\n";
for(my $i=1; $i<=$#listFile; $i++)
{
chomp($listFile[$i]);
open(F1, "$folderCheckedForStat/$listFile[$i]") or die "$!: $folderCheckedForStat/$listFile[$i]\n";
my $header = <F1>;
while(<F1>) { print OUT $_; }
close F1;
}
close OUT;
}
foreach my $file (`ls $folderCheckedForStat/*`)
{
chomp($file);
############ Recover the number of the columns of interest
$chr_value = recoverNumCol($file, $chr_name);
$start_value = recoverNumCol($file, $start_name);
$ref_value = recoverNumCol($file, $ref_name);
$alt_value = recoverNumCol($file, $alt_name);
$func_value = recoverNumCol($file, $func_name);
$exonicFunc_value = recoverNumCol($file, $exonicFunc_name);
$strand_value = recoverNumCol($file, $strand_name);
$contextSeq_value = recoverNumCol($file, $context_name);
############ Recover the number of the columns of interest
############ Calculate the statistics for each file
File2Hash($file, $func_value, $exonicFunc_value, $chr_value, $ref_value, $alt_value, $strand_value, $contextSeq_value, $refH_file, $refT_func);
}
}
# Calculate the chi2 for the strand bias
sub CalculateChi2
{
my ($refH_file, $folderChi2) = @_;
# No value for the chi2
if(scalar (keys %{$refH_file}) == 0)
{
print STDERR "Error: No value for calculating the chi2 for the strand bias\n";
exit;
}
# Strand bias for one mutation type for all the samples
my %h_tempchi2 = ();
my ($ca_NonTr, $ca_Tr, $cg_NonTr, $cg_Tr, $ct_NonTr, $ct_Tr, $ta_NonTr, $ta_Tr, $tc_NonTr, $tc_Tr, $tg_NonTr, $tg_Tr) = (0,0,0,0,0,0, 0,0,0,0,0,0);
my $nb_file = 0;
foreach my $k_file (sort keys %{$refH_file})
{
$nb_file++;
foreach my $k_func (sort keys %{$refH_file->{$k_file}{'6mutType'}})
{
foreach my $k_mutation (sort keys %{$refH_file->{$k_file}{'6mutType'}{$k_func}})
{
if($k_mutation eq "C:G>A:T")
{
$h_tempchi2{'C>A'}{$k_file}{'NonTr'} += $refH_file->{$k_file}{'6mutType'}{$k_func}{$k_mutation}{'NonTr'};
$h_tempchi2{'C>A'}{$k_file}{'Tr'} += $refH_file->{$k_file}{'6mutType'}{$k_func}{$k_mutation}{'Tr'};
}
if($k_mutation eq "C:G>G:C")
{
$h_tempchi2{'C>G'}{$k_file}{'NonTr'} += $refH_file->{$k_file}{'6mutType'}{$k_func}{$k_mutation}{'NonTr'};
$h_tempchi2{'C>G'}{$k_file}{'Tr'} += $refH_file->{$k_file}{'6mutType'}{$k_func}{$k_mutation}{'Tr'};
}
if($k_mutation eq "C:G>T:A")
{
$h_tempchi2{'C>T'}{$k_file}{'NonTr'} += $refH_file->{$k_file}{'6mutType'}{$k_func}{$k_mutation}{'NonTr'};
$h_tempchi2{'C>T'}{$k_file}{'Tr'} += $refH_file->{$k_file}{'6mutType'}{$k_func}{$k_mutation}{'Tr'};
}
if($k_mutation eq "T:A>A:T")
{
$h_tempchi2{'T>A'}{$k_file}{'NonTr'} += $refH_file->{$k_file}{'6mutType'}{$k_func}{$k_mutation}{'NonTr'};
$h_tempchi2{'T>A'}{$k_file}{'Tr'} += $refH_file->{$k_file}{'6mutType'}{$k_func}{$k_mutation}{'Tr'};
}
if($k_mutation eq "T:A>C:G")
{
$h_tempchi2{'T>C'}{$k_file}{'NonTr'} += $refH_file->{$k_file}{'6mutType'}{$k_func}{$k_mutation}{'NonTr'};
$h_tempchi2{'T>C'}{$k_file}{'Tr'} += $refH_file->{$k_file}{'6mutType'}{$k_func}{$k_mutation}{'Tr'};
}
if($k_mutation eq "T:A>G:C")
{
$h_tempchi2{'T>G'}{$k_file}{'NonTr'} += $refH_file->{$k_file}{'6mutType'}{$k_func}{$k_mutation}{'NonTr'};
$h_tempchi2{'T>G'}{$k_file}{'Tr'} += $refH_file->{$k_file}{'6mutType'}{$k_func}{$k_mutation}{'Tr'};
}
}
}
}
# Create the input file for NMF
open(CHI2, ">", "$folderChi2/Input_chi2_strandBias.txt") or die "$!: $folderChi2/Input_chi2_strandBias.txt\n";
print CHI2 "SampleName\tNonTr\tTr\tAlteration\n";
foreach my $k_mutation (sort keys %h_tempchi2)
{
foreach my $k_file (sort keys %{$h_tempchi2{$k_mutation}})
{
print CHI2 "$k_file\t$h_tempchi2{$k_mutation}{$k_file}{'NonTr'}\t$h_tempchi2{$k_mutation}{$k_file}{'Tr'}\t$k_mutation\n";
}
}
close CHI2;
`Rscript $pathRscriptChi2test --folderChi2 $folderChi2 2>&1`;
# `Rscript $pathRscriptChi2test $folderChi2 2>&1`;
if(!-e "$folderChi2/Output_chi2_strandBias.txt")
{
print STDERR "Error: Chi2 test didn't work !!!\n";
exit;
}
}
# Write the different statistics in the report
sub WriteStatistics
{
my ($refH_file, $nb_func, $folderFigure, $folderChi2, $folderNMF) = @_;
# Save the different graphs in specific folde
if(!-e "$folderFigure/Overall_mutation_distribution") { mkdir("$folderFigure/Overall_mutation_distribution") or die "Can't create the directory $folderFigure/Overall_mutation_distribution\n"; }
if(!-e "$folderFigure/Impact_protein_sequence") { mkdir("$folderFigure/Impact_protein_sequence") or die "Can't create the directory $folderFigure/Impact_protein_sequence\n"; }
if(!-e "$folderFigure/SBS_distribution") { mkdir("$folderFigure/SBS_distribution") or die "Can't create the directory $folderFigure/SBS_distribution\n"; }
if(!-e "$folderFigure/Stranded_Analysis") { mkdir("$folderFigure/Stranded_Analysis") or die "Can't create the directory $folderFigure/Stranded_Analysis\n"; }
if(!-e "$folderFigure/Trinucleotide_Sequence_Context") { mkdir("$folderFigure/Trinucleotide_Sequence_Context") or die "Can't create the directory $folderFigure/Trinucleotide_Sequence_Context\n"; }
if(!-e "$folderFigure/Distribution_SBS_Per_Chromosomes") { mkdir("$folderFigure/Distribution_SBS_Per_Chromosomes") or die "Can't create the directory $folderFigure/Distribution_SBS_Per_Chromosomes\n"; }
# Create a workbook with all the samples
my $wb = ""; my $ws_sum = "";
my ($ws_inputNMF_count, $ws_inputNMF_percent) = ("", "");
# Create one Excel file with all the samples
if($oneReportPerSample == 2)
{
$wb = Spreadsheet::WriteExcel->new("$folderMutAnalysis/Report_Mutation_Spectra.xls");
############## Set the variables for font formats in the Excel report
Format_A10($wb, \$format_A10); # Text center in Arial 10
Format_A10BoldLeft($wb, \$format_A10Boldleft); # Text on the left in Arial 10 bold
Format_TextSection($wb, \$formatT_left, \$formatT_right, \$formatT_bottomRight, \$formatT_bottomLeft, \$formatT_bottom, \$formatT_bottomHeader, \$formatT_bottomRightHeader, \$formatT_bottomHeader2, \$formatT_rightHeader);
Format_GraphTitle($wb, \$formatT_graphTitle);
Format_Table($wb, \$table_topleft, \$table_topRight, \$table_bottomleft, \$table_bottomRight, \$table_top, \$table_right, \$table_bottom, \$table_bottomItalicRed, \$table_left, \$table_bottomrightHeader, \$table_left2, \$table_middleHeader, \$table_middleHeader2);
Format_A10ItalicRed($wb, \$format_A10ItalicRed);
############### Worksheet with a summary of the samples
$ws_sum = $wb->add_worksheet("Sample_List");
$ws_sum->write(0, 0, "Samples", $format_A10); $ws_sum->write(0, 1, "Total number SBS", $format_A10); $ws_sum->write(0, 2, "Total number of Indel", $format_A10); $ws_sum->write(0, 3, "Total number of mutations", $format_A10);
$ws_sum->set_column(0,0, 50); $ws_sum->set_column(1,1, 20); $ws_sum->set_column(2,2, 20); $ws_sum->set_column(3,3, 22);
############### Write the input matrix for NMF for the count and the un-normalized frequency
$ws_inputNMF_count = $wb->add_worksheet("Input_NMF_Count");
$ws_inputNMF_percent = $wb->add_worksheet("Input_NMF_Percent");
}
################################################ Set the Rows and columns of the different part of the report
my $row_SumSheet = 1; # First row for the summary sheet of the report
my $rowStart_SBSdistrBySeg = 48; my $colStart_SBSdistrBySeg = 0; # For the table SBS distribution by segment
my $colStart_matrixSeqContext = 19; # Sequence context
my $col_inputNMF = 0; # Write the names of the samples with at least 33 SBS
## For each file
foreach my $k_file (sort keys %{$refH_file})
{
print "File in process: $k_file\n";
# Count the total of mutations for 6 mutation types on genomic strand
my ($c_ca6_g, $c_cg6_g, $c_ct6_g, $c_ta6_g, $c_tc6_g, $c_tg6_g) = (0,0,0, 0,0,0);
if($k_file ne "Pool_Data") { $col_inputNMF++; }
############### Save the chi2 values into a hash table
if(-e "$folderChi2/Output_chi2_strandBias.txt")
{
chi2hash("$folderChi2/Output_chi2_strandBias.txt", $k_file);
}
# Create one workbook for each sample
if($oneReportPerSample == 1)
{
$wb = Spreadsheet::WriteExcel->new("$folderMutAnalysis/Report_Mutation_Spectra-$k_file.xls");
############## Set the variables for font formats in the Excel report
Format_A10($wb, \$format_A10); # Text center in Arial 10
Format_A10BoldLeft($wb, \$format_A10Boldleft); # Text on the left in Arial 10 bold
Format_TextSection($wb, \$formatT_left, \$formatT_right, \$formatT_bottomRight, \$formatT_bottomLeft, \$formatT_bottom, \$formatT_bottomHeader, \$formatT_bottomRightHeader, \$formatT_bottomHeader2, \$formatT_rightHeader);
Format_GraphTitle($wb, \$formatT_graphTitle);
Format_Table($wb, \$table_topleft, \$table_topRight, \$table_bottomleft, \$table_bottomRight, \$table_top, \$table_right, \$table_bottom, \$table_bottomItalicRed, \$table_left, \$table_bottomrightHeader, \$table_left2, \$table_middleHeader, \$table_middleHeader2);
Format_A10ItalicRed($wb, \$format_A10ItalicRed);
############### Worksheet with a summary of the samples
$ws_sum = $wb->add_worksheet("Sample_List");
$ws_sum->write(0, 0, "Samples", $format_A10); $ws_sum->write(0, 1, "Total number SBS", $format_A10); $ws_sum->write(0, 2, "Total number of Indel", $format_A10); $ws_sum->write(0, 3, "Total number of mutations", $format_A10);
$ws_sum->set_column(0,0, 50); $ws_sum->set_column(1,1, 20); $ws_sum->set_column(2,2, 20); $ws_sum->set_column(3,3, 22);
# Write in the Samples sheet the name and the total number of SBS
$ws_sum->write(1, 0, "$k_file", $format_A10);
$ws_sum->write(1, 1, $refH_file->{$k_file}{'TotalSBSGenomic'}, $format_A10); $ws_sum->write(1, 2, $refH_file->{$k_file}{'TotalIndelGenomic'}, $format_A10); $ws_sum->write($row_SumSheet, 3, $refH_file->{$k_file}{'TotalMutGenomic'}, $format_A10);
}
# One workbook with all the samples
else
{
# Write in the Samples sheet the name and the total number of SBS
$ws_sum->write($row_SumSheet, 0, $k_file, $format_A10);
$ws_sum->write($row_SumSheet, 1, $refH_file->{$k_file}{'TotalSBSGenomic'}, $format_A10); $ws_sum->write($row_SumSheet, 2, $refH_file->{$k_file}{'TotalIndelGenomic'}, $format_A10); $ws_sum->write($row_SumSheet, 3, $refH_file->{$k_file}{'TotalMutGenomic'}, $format_A10);
# For NMF don't consider the pool of the samples
if($k_file ne "Pool_Data")
{
# Write in the input NMF sheet the name of the samples
$ws_inputNMF_count->write(0, $col_inputNMF, $k_file);
$ws_inputNMF_percent->write(0, $col_inputNMF, $k_file);
}
}
# Calculate the correlation between the number of SBS and the size of the chromosome
PearsonCoefficient($refH_file, $k_file);
# Add a worksheet to the workbook
my $ws = $wb->add_worksheet($k_file);
# Write the titles of the different sections of the report
WriteBorderSection($wb, $ws, $rowStart_SBSdistrBySeg, $colStart_SBSdistrBySeg, $nb_func, $colStart_matrixSeqContext);
# Write the mutation types (6 types)
WriteHeaderSection($wb, $ws, $rowStart_SBSdistrBySeg, $colStart_SBSdistrBySeg, $nb_func, $colStart_matrixSeqContext);
# Save the figures of each samples in a different folder
if(!-e "$folderFigure/Overall_mutation_distribution/$k_file") { mkdir("$folderFigure/Overall_mutation_distribution/$k_file") or die "Can't create the directory $folderFigure/Overall_mutation_distribution/$k_file\n"; }
if(!-e "$folderFigure/Impact_protein_sequence/$k_file") { mkdir("$folderFigure/Impact_protein_sequence/$k_file") or die "Can't create the directory $folderFigure/Impact_protein_sequence/$k_file\n"; }
if(!-e "$folderFigure/SBS_distribution/$k_file") { mkdir("$folderFigure/SBS_distribution/$k_file") or die "Can't create the directory $folderFigure/SBS_distribution\n"; }
if(!-e "$folderFigure/Stranded_Analysis/$k_file") { mkdir("$folderFigure/Stranded_Analysis/$k_file") or die "Can't create the directory $folderFigure/Stranded_Analysis/$k_file\n"; }
if(!-e "$folderFigure/Trinucleotide_Sequence_Context/$k_file") { mkdir("$folderFigure/Trinucleotide_Sequence_Context/$k_file") or die "Can't create the directory $folderFigure/Trinucleotide_Sequence_Context/$k_file\n"; }
##################################################################################################################################################
################################################################# Write the statistics ##########################################################
##################################################################################################################################################
my $row_SBSDistrBySegAndFunc_CG = $rowStart_SBSdistrBySeg+($nb_func*2)+16;
######## Count of SBS by functional impact on the protein (Table 2) + Create the input for ggplot2 (pie chart with functional impact) + Create the input for ggplot2 (pie chart of SBS vs. Indels)
writeDistrFuncImpact($ws, $refH_file, $k_file, "$folderFigure/Impact_protein_sequence/$k_file/$k_file-DistributionExoFunc.txt", "$folderFigure/Overall_mutation_distribution/$k_file/$k_file-OverallMutationDistribution.txt");
######## Result of the chi2 for the strand bias (Table 3) + Create the input for ggplot2 (Strand bias bar graph)
writeChi2result($wb, $ws, "$folderFigure/Stranded_Analysis/$k_file/$k_file-StrandBias.txt", $refH_file, $k_file);
######## SBS distribution by functional region (Table 4) + Strand bias by functional region (Table 5) + Create the input for ggplot2 (SBS distribution) + Overall count and percent of SBS (Table 1)
writeStatbyFuncRegion($refH_file, $k_file, $ws, $rowStart_SBSdistrBySeg, $colStart_SBSdistrBySeg, $nb_func, \$row_SBSDistrBySegAndFunc_CG, "$folderFigure/SBS_distribution/$k_file/$k_file-SBS_distribution.txt");
######## Distribution of SBS per chromosomes and the result of Pearson test (Table 6)
writeDistrByChr($ws, $refH_file, $k_file, $row_SBSDistrBySegAndFunc_CG, $colStart_SBSdistrBySeg, "$folderFigure/Distribution_SBS_Per_Chromosomes/$k_file-DistributionSNVS_per_chromosome.txt");
######## Trinucleotide sequence context on genomic strand (Panel 1)
# Represent the trinucleotide with a heatmap with count of SBS
my $heatmapCountggplot2 = "$folderFigure/Trinucleotide_Sequence_Context/$k_file/$k_file-HeatmapCount-Genomic.txt";
my $heatmapPercentggplot2 = "$folderFigure/Trinucleotide_Sequence_Context/$k_file/$k_file-HeatmapPercent-Genomic.txt";
my $triNtBarChartggplot2 = "$folderFigure/Trinucleotide_Sequence_Context/$k_file/$k_file-MutationSpectraPercent-Genomic.txt";
writeTriNtGenomic($ws, $refH_file, $k_file, $colStart_matrixSeqContext, $heatmapCountggplot2, $heatmapPercentggplot2, $triNtBarChartggplot2, \$c_ca6_g, \$c_cg6_g, \$c_ct6_g, \$c_ta6_g, \$c_tc6_g, \$c_tg6_g);
# For the input matrix for NMF
if($k_file ne "Pool_Data") { push(@{$h_inputNMF{'Sample'}}, $k_file); }
######## Trinucleotide sequence context on genomic strand (Panel 2)
my $triNtBarChartCodingCountggplot2 = "$folderFigure/Stranded_Analysis/$k_file/$k_file-StrandedSignatureCount.txt";
my $triNtBarChartCodingPercentggplot2 = "$folderFigure/Stranded_Analysis/$k_file/$k_file-StrandedSignaturePercent.txt";
writeTriNtCoding($ws, $rowStart_SBSdistrBySeg, $colStart_matrixSeqContext, $refH_file, $k_file, $triNtBarChartCodingCountggplot2, $triNtBarChartCodingPercentggplot2);
######## Generate the figures and include them in the report
createWriteFigs($ws, $rowStart_SBSdistrBySeg, $colStart_matrixSeqContext, $folderFigure, $k_file, $c_ca6_g, $c_cg6_g, $c_ct6_g, $c_ta6_g, $c_tc6_g, $c_tg6_g);
# Next sample
$row_SumSheet++;
} # End $k_file
######## Write the input matrix for NMF
# One workbook with all the samples
writeInputNMF($ws_inputNMF_count, $ws_inputNMF_percent, "$folderNMF/Input_NMF_Count.txt", "$folderNMF/Input_NMF_Frequency.txt");
# Close the workbook
$wb->close();
}
# Create logo for representing the sequence context with n bases
sub CreateLogo
{
my ($refH_file, $folderWebLogo) = @_;
my $folderSample = "";
foreach my $k_file (sort keys %{$refH_file})
{
$folderSample = "$folderWebLogo/$k_file";
if(!-e $folderSample) { mkdir($folderSample) or die "Can't create the directory $folderSample\n"; }
my $test_lengthSeqContext = 0;
foreach my $k_mutation (sort keys %{$refH_file->{$k_file}{'WebLogo3'}})
{
$k_mutation =~ /(\w)>(\w)/;
my ($ref, $alt) = ($1, $2);
open(WEBLOGO, ">", "$folderSample/$k_file-$ref$alt.fa") or die "$!: $folderSample/$k_file-$ref$alt.fa\n";
foreach (@{$refH_file->{$k_file}{'WebLogo3'}{$k_mutation}})
{
print WEBLOGO ">$k_file\n$_\n";
if(length($_) < 10) { $test_lengthSeqContext = 0; }
else { $test_lengthSeqContext = 1; }
}
close WEBLOGO;
}
## Generate the logo
foreach my $fastaFile (`ls $folderSample/*.fa`)
{
chomp($fastaFile);
my ($filename, $directories, $suffix) = fileparse("$folderSample/$fastaFile", qr/\.[^.]*/);
$filename =~ /(.+)\-/;
my $title = $1;
## Test if there is fasta sequences for the mutation type
my $nbLigne_temp = `wc -l $fastaFile`;
my @nbLigne = split(" ", $nbLigne_temp);
if($nbLigne[0] == 0) { print "WARNING: No sequence for $filename\n"; next; }
# When length sequence context is lower than 10 the image is to small for adding a title
if($test_lengthSeqContext == 1) { system("weblogo -c classic -F png_print -U probability --title $title < $fastaFile > $folderSample/$filename-Probability.png"); }
else { system("weblogo -c classic -F png_print -U probability < $fastaFile > $folderSample/$filename-Probability.png"); }
}
}
}
### Save the count of SBS for each file into a hash table
sub File2Hash
{
my ($inputFile, $func_value, $exonicFunc_value, $chr_value, $ref_value, $alt_value, $strand_value, $contextSeq_value, $refH_file, $refT_func) = @_;
my ($filename, $directories, $suffix) = fileparse($inputFile, qr/\.[^.]*/);
# Initialisation of the hash
my @tab_mutation = qw(C:G>A:T C:G>G:C C:G>T:A T:A>A:T T:A>C:G T:A>G:C);
my @tab_aaChange = ("NonTr", "Tr", "TotalMutG");
my @tabExoFunc = ("frameshift insertion", "frameshift deletion", "frameshift block substitution", "frameshift substitution", "stopgain", "stoploss", "nonframeshift insertion", "nonframeshift deletion", "nonframeshift substitution", "nonframeshift block substitution", "nonsynonymous SNV", "synonymous SNV", "unknown", "NA");
# Total number of SBS on the genomic strand
$refH_file->{$filename}{'TotalSBSGenomic'} = 0;
# Total number of Indel on the genomic strand
$refH_file->{$filename}{'TotalIndelGenomic'} = 0;
# Total number of SBS on the coding strand
$refH_file->{$filename}{'TotalSBSCoding'} = 0;
# Total number of SBS and Indel on the genomic strand
$refH_file->{$filename}{'TotalMutGenomic'} = 0;
#####################################################
# Initialisation of the tables and hash tables #
#####################################################
## SBS by segment (6 mutation types)
foreach my $elt_tabFunc (@$refT_func)
{
foreach my $elt_tabMutation (@tab_mutation)
{
foreach my $elt_aaChange (@tab_aaChange)
{
$refH_file->{$filename}{'6mutType'}{$elt_tabFunc}{$elt_tabMutation}{$elt_aaChange} = 0;
}
}
}
## Pearson correlation
$refH_file->{$filename}{'SBSPerChr'}{'AllMutType'} = 0;
# Count of SBS per chromosome foreach mutation types
foreach my $elt_tabMutation (@tab_mutation)
{
foreach my $chromosome (sort keys %chromosomes){ $refH_file->{$filename}{'SBSPerChr'}{$elt_tabMutation}{'CHR'}{$chromosome}{'chr'} = 0;}
$refH_file->{$filename}{'SBSPerChr'}{$elt_tabMutation}{'Pearson'} = 0;
}
foreach my $chromosome (sort keys %chromosomes)
{
$refH_file->{$filename}{'SBSPerChr'}{'TotalPerChr'}{$chromosome}{'chr'}=0;
}
## Impact of SBS on protein
foreach my $elt_exoFunc (@tabExoFunc)
{
$refH_file->{$filename}{'ImpactSBS'}{$elt_exoFunc} = 0;
}
## Sequence context (genomic strand)
my @tab_mutation2 = qw(C>A C>G C>T T>A T>C T>G);
my @tab_context = qw(A_A A_C A_G A_T C_A C_C C_G C_T G_A G_C G_G G_T T_A T_C T_G T_T);
foreach my $elt_context (@tab_context)
{
foreach my $elt_mutation3 (@tab_mutation2)
{
$refH_file->{$filename}{'SeqContextG'}{$elt_context}{$elt_mutation3} = 0;
}
}
## Sequence context (coding strand)
my @tab_TrNonTr = qw(NonTr Tr);
foreach my $elt_context (@tab_context)
{
foreach my $elt_mutation2 (@tab_mutation2)
{
foreach my $trNonTr (@tab_TrNonTr)
{
$refH_file->{$filename}{'SeqContextC'}{$elt_context}{$elt_mutation2}{$trNonTr} = 0;
}
}
}
#####################################################
# Parse the intput file #
#####################################################
open(F1,$inputFile) or die "$!: $inputFile\n";
my $header = <F1>;
while(<F1>)
{
$_ =~ s/[\r\n]+$//;
my @tab = split("\t", $_);
### Don't consider random chromosomes and chromosome M
if( ($tab[$chr_value] =~ /random/i) || ($tab[$chr_value] =~ /M/i) ) { next; }
### Recover the trinucleotide sequence context: Extract the base just before and after the mutation
my $context = "";
my $contextSequence = $tab[$contextSeq_value]; $contextSequence =~ tr/a-z/A-Z/;
my @tempContextSequence = split("", $contextSequence);
my $total_nbBaseContext = $#tempContextSequence;
my $midlle_totalNbBaseContext = $total_nbBaseContext/2; # For having the middle of the sequence
my $before = $midlle_totalNbBaseContext - 1; my $after = $midlle_totalNbBaseContext + 1;
$context = $tempContextSequence[$before]."_".$tempContextSequence[$after];
### Recover the annotations on the impact on the protein for creating the pie chart
my $exoFunc = "";
# Sometimes the annotation is repeated frameshift deletion;frameshift deletion
if($tab[$exonicFunc_value] =~ /\;/)
{
my @temp = split(";", $tab[$exonicFunc_value]);
if($temp[0] eq $temp[1]) { $exoFunc = $temp[0]; }
}
# The annotations have changed after MAJ Annovar 2014Jul22 (stopgain SNV => stopgain)
elsif($tab[$exonicFunc_value] eq "stopgain SNV") { $exoFunc = "stopgain"; }
elsif($tab[$exonicFunc_value] eq "stoploss SNV") { $exoFunc = "stoploss"; }
elsif($tab[$exonicFunc_value] eq "nonsynonymous_SNV") { $exoFunc = "nonsynonymous SNV"; }
elsif($tab[$exonicFunc_value] eq "stopgain_SNV") { $exoFunc = "stopgain SNV"; }
elsif($tab[$exonicFunc_value] eq "synonymous_SNV") { $exoFunc = "synonymous SNV"; }
else { $exoFunc = $tab[$exonicFunc_value]; }
if(exists $refH_file->{$filename}{'ImpactSBS'}{$exoFunc})
{
# If the sequence context if not recovered correctly don't considered the variants
if( ($context =~ /N/) || (length($context) != 3) ) { next; }
$refH_file->{$filename}{'ImpactSBS'}{$exoFunc}++;
$refH_file->{$filename}{'TotalMutGenomic'}++;
}
else { print "WARNING: Exonic function not considered: $exoFunc\n"; }
#### Only SBS are considered for the statistics
if( ($tab[$ref_value] =~ /^[ACGT]$/i) && ($tab[$alt_value] =~ /^[ACGT]$/i) )
{
# If the sequence context if not recovered correctly don't considered the variants
if( ($context =~ /N/) || (length($context) != 3) ) { next; }
# Total number of SBS on the genomic strand
$refH_file->{$filename}{'TotalSBSGenomic'}++;
# Total number of SBS on the coding strand with a sequence context
if( ($tab[$strand_value] eq "+") || ($tab[$strand_value] eq "-") )
{
if( ($context ne "NA") && (($context =~ /N/) || (length($context) != 3)) ) { next; }
$refH_file->{$filename}{'TotalSBSCoding'}++;
}
}
else { $refH_file->{$filename}{'TotalIndelGenomic'}++; }
### Number of SBS per chromosome: remove the "chr"
my $chrNameForH=$tab[$chr_value];
if(exists $refH_file->{$filename}{'SBSPerChr'}{'TotalPerChr'}{$chrNameForH}{'chr'})
{
$refH_file->{$filename}{'SBSPerChr'}{'TotalPerChr'}{$chrNameForH}{'chr'}++;
}
#### Some func value are repeated and separated by ";"
my $funcSegment = "";
if($tab[$func_value] =~ /;/) { my @temp = split(";", $tab[$func_value]); $funcSegment = $temp[0]; }
else { $funcSegment = $tab[$func_value]; }
#####################################################
# Calculate the statistics for each mutation type #
#####################################################
if( (($tab[$ref_value] eq "C") && ($tab[$alt_value] eq "A")) || ( ($tab[$ref_value] eq "G") && ($tab[$alt_value] eq "T") ) )
{
my $mutation = "C:G>A:T";
statPerMutType($filename, \@tab, $ref_value, $alt_value, \@tempContextSequence, $before, $after, $context, $funcSegment, $mutation, $refH_file, $chrNameForH, $strand_value, $midlle_totalNbBaseContext);
}
if( (($tab[$ref_value] eq "C") && ($tab[$alt_value] eq "G")) || ( ($tab[$ref_value] eq "G") && ($tab[$alt_value] eq "C") ) )
{
my $mutation = "C:G>G:C";
statPerMutType($filename, \@tab, $ref_value, $alt_value, \@tempContextSequence, $before, $after, $context, $funcSegment, $mutation, $refH_file, $chrNameForH, $strand_value, $midlle_totalNbBaseContext);
}
if( (($tab[$ref_value] eq "C") && ($tab[$alt_value] eq "T")) || ( ($tab[$ref_value] eq "G") && ($tab[$alt_value] eq "A") ) )
{
my $mutation = "C:G>T:A";
statPerMutType($filename, \@tab, $ref_value, $alt_value, \@tempContextSequence, $before, $after, $context, $funcSegment, $mutation, $refH_file, $chrNameForH, $strand_value, $midlle_totalNbBaseContext);
}
if( (($tab[$ref_value] eq "T") && ($tab[$alt_value] eq "A")) || ( ($tab[$ref_value] eq "A") && ($tab[$alt_value] eq "T") ) )
{
my $mutation = "T:A>A:T";
statPerMutType($filename, \@tab, $ref_value, $alt_value, \@tempContextSequence, $before, $after, $context, $funcSegment, $mutation, $refH_file, $chrNameForH, $strand_value, $midlle_totalNbBaseContext);
}
if( (($tab[$ref_value] eq "T") && ($tab[$alt_value] eq "C")) || ( ($tab[$ref_value] eq "A") && ($tab[$alt_value] eq "G")) )
{
my $mutation = "T:A>C:G";
statPerMutType($filename, \@tab, $ref_value, $alt_value, \@tempContextSequence, $before, $after, $context, $funcSegment, $mutation, $refH_file, $chrNameForH, $strand_value, $midlle_totalNbBaseContext);
}
if( (($tab[$ref_value] eq "T") && ($tab[$alt_value] eq "G")) || ( ($tab[$ref_value] eq "A") && ($tab[$alt_value] eq "C")) )
{
my $mutation = "T:A>G:C";
statPerMutType($filename, \@tab, $ref_value, $alt_value, \@tempContextSequence, $before, $after, $context, $funcSegment, $mutation, $refH_file, $chrNameForH, $strand_value, $midlle_totalNbBaseContext);
}
}
close F1;
}
### Count the number of SBS for 12 and 6 categories
sub statPerMutType
{
my ($filename, $refTab, $ref_value, $alt_value, $refTab_tempSeqContext, $before, $after, $context, $funcSegment, $mutation, $refH_file, $chrNameForH, $strand_value, $midlle_totalNbBaseContext) = @_;
my @tab = @$refTab;
my @tempContextSequence = @$refTab_tempSeqContext;
# Split the mutations
$mutation =~ /(\w)\:(\w)\>(\w)\:(\w)/;
my ($ref1, $ref2, $alt1, $alt2) = ($1, $2, $3, $4);
# Count the total number of mutations
$refH_file->{$filename}{'6mutType'}{$funcSegment}{$mutation}{'TotalMutG'}++;
# Pearson correlation
if(exists $refH_file->{$filename}{'SBSPerChr'}{$mutation}{'CHR'}{$chrNameForH}{'chr'})
{
$refH_file->{$filename}{'SBSPerChr'}{$mutation}{'CHR'}{$chrNameForH}{'chr'}++;
}
#### Sequence context - 6 mutation types - genomic strand
my $mutationSeqContext6mutType = "$ref1>$alt1";
# We want to express the mutation in C> or T>
if( ($tab[$ref_value] eq $ref2) && ($tab[$alt_value] eq $alt2) )
{
my $base3 = complement($tempContextSequence[$before]);
my $base5 = complement($tempContextSequence[$after]);
my $context_reverse = $base5."_".$base3;
if(exists $refH_file->{$filename}{'SeqContextG'}{$context_reverse}{$mutationSeqContext6mutType})
{
$refH_file->{$filename}{'SeqContextG'}{$context_reverse}{$mutationSeqContext6mutType}++;
}
}
elsif(exists $refH_file->{$filename}{'SeqContextG'}{$context}{$mutationSeqContext6mutType})
{
$refH_file->{$filename}{'SeqContextG'}{$context}{$mutationSeqContext6mutType}++;
}
#### Strand analysis C>N and T>N on NonTr strand
if( (($tab[$strand_value] eq "+") && (($tab[$ref_value] eq $ref1)&&($tab[$alt_value] eq $alt1))) || (($tab[$strand_value] eq "-") && (($tab[$ref_value] eq $ref2)&&($tab[$alt_value] eq $alt2))) )
{
if(exists $refH_file->{$filename}{'6mutType'}{$funcSegment}{$mutation}{'NonTr'})
{
$refH_file->{$filename}{'6mutType'}{$funcSegment}{$mutation}{'NonTr'}++;
}
# C>A With the sequence context (C>N and T>N on strand +)
if( ($tab[$strand_value] eq "+") && (($tab[$ref_value] eq $ref1)&&($tab[$alt_value] eq $alt1)) )
{
if(exists $refH_file->{$filename}{'SeqContextC'}{$context}{$mutationSeqContext6mutType}{'NonTr'})
{
$refH_file->{$filename}{'SeqContextC'}{$context}{$mutationSeqContext6mutType}{'NonTr'}++;
}
}
# C>A With the sequence context (G>N and A>N on strand -)
else
{
my $base3 = complement($tempContextSequence[$before]);
my $base5 = complement($tempContextSequence[$after]);
my $context_reverse = $base5."_".$base3;
if(exists $refH_file->{$filename}{'SeqContextC'}{$context_reverse}{$mutationSeqContext6mutType}{'NonTr'})
{
$refH_file->{$filename}{'SeqContextC'}{$context_reverse}{$mutationSeqContext6mutType}{'NonTr'}++;
}
}
}
#### Strand analysis C>N and T>N on Tr strand
if( (($tab[$strand_value] eq "-") && (($tab[$ref_value] eq $ref1)&&($tab[$alt_value] eq $alt1))) || (($tab[$strand_value] eq "+") && (($tab[$ref_value] eq $ref2)&&($tab[$alt_value] eq $alt2))) )
{
if(exists $refH_file->{$filename}{'6mutType'}{$funcSegment}{$mutation}{'Tr'})
{
$refH_file->{$filename}{'6mutType'}{$funcSegment}{$mutation}{'Tr'}++;
}
# C>N and T>N With the sequence context (strand -)
if( ($tab[$strand_value] eq "-") && (($tab[$ref_value] eq $ref1)&&($tab[$alt_value] eq $alt1)) )
{
if(exists $refH_file->{$filename}{'SeqContextC'}{$context}{$mutationSeqContext6mutType}{'Tr'})
{
$refH_file->{$filename}{'SeqContextC'}{$context}{$mutationSeqContext6mutType}{'Tr'}++;
}
}
# C>N and T>N with the sequence context (strand +)
if( ($tab[$strand_value] eq "+") && (($tab[$ref_value] eq $ref2)&&($tab[$alt_value] eq $alt2)) )
{
my $base3 = complement($tempContextSequence[$before]);
my $base5 = complement($tempContextSequence[$after]);
my $context_reverse = $base5."_".$base3;
if(exists $refH_file->{$filename}{'SeqContextC'}{$context_reverse}{$mutationSeqContext6mutType}{'Tr'})
{
$refH_file->{$filename}{'SeqContextC'}{$context_reverse}{$mutationSeqContext6mutType}{'Tr'}++;
}
}
}
#### WebLogo-3
if(($tab[$ref_value] eq $ref1) && ($tab[$alt_value] eq $alt1))
{
# For the logo all the sequences must have the same length
if(scalar(@tempContextSequence) == 2) { next; }
my ($contextTemp1, $contextTemp2) = ("", "");
for(my $i=0; $i<$midlle_totalNbBaseContext; $i++) { $contextTemp1 .= $tempContextSequence[$i]; }
for(my $i=$midlle_totalNbBaseContext+1; $i<=$#tempContextSequence; $i++) { $contextTemp2 .= $tempContextSequence[$i]; }
my $context = $contextTemp1.$ref1.$contextTemp2;
push(@{$refH_file->{$filename}{'WebLogo3'}{$mutationSeqContext6mutType}}, $context);
}
else
{
if(scalar(@tempContextSequence) == 2) { next; }
my ($contextTemp1, $contextTemp2) = ("", "");
for(my $i=0; $i<$midlle_totalNbBaseContext; $i++) { $contextTemp1 .= complement($tempContextSequence[$i]); }
for(my $i=$midlle_totalNbBaseContext+1; $i<=$#tempContextSequence; $i++) { $contextTemp2 .= complement($tempContextSequence[$i]); }
my $context = $contextTemp1.$ref1.$contextTemp2; $context = reverse $context;
push(@{$refH_file->{$filename}{'WebLogo3'}{$mutationSeqContext6mutType}}, $context);
}
}
# Calculate the correlation between the number of SBS and the size of the chromosome
sub PearsonCoefficient
{
our ($refH_file, $filename) = @_;
#### Calculate the Pearson coefficient
my @total_SBS = (); # Pearson for all mutation types
# Create a 2D array