|
7 | 7 | %% Task 1: Single-phase inverter: %%
|
8 | 8 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
9 | 9 |
|
10 |
| -\task{Single-phase DC inverter} |
11 |
| -The following ideal single-phase DC inverter |
| 10 | +\task{Single-phase DC converter} |
| 11 | +The following ideal single-phase DC converter |
12 | 12 | \input{fig/ex07/Single-phase_DC_Inverter.tex}
|
13 | 13 |
|
14 | 14 | configured in a bridge topology and supplies a load consisting of an inductor and an internal load voltage. The inverter consists
|
15 |
| -of four thyristors arranged in H-bridge configuration. |
| 15 | +of four transistors arranged in H-bridge configuration. |
16 | 16 |
|
17 | 17 | \begin{table}[ht]
|
18 | 18 | \centering % Zentriert die Tabelle
|
19 | 19 | \begin{tabular}{ll}
|
20 | 20 | \toprule
|
21 | 21 | Input DC voltage: & $U_{\mathrm{1}}=\SI{200}{\volt}$ \\
|
22 | 22 | Inductance: & $L = \SI{4.8}{\milli \henry}$ \\
|
23 |
| - Internal load voltage: & $u_\mathrm{1e}(t) = 150 \sin(\omega t - \frac{\pi}{6})$ \\ |
| 23 | + Internal load voltage: & $u_{2\mathrm{i}}(t) = 150 \sin(\omega t - \frac{\pi}{6})$ \\ |
24 | 24 | Reference angular frequency: & $\omega_2 = 2\pi \cdot \SI{50}{\hertz}$ \\
|
25 | 25 | \bottomrule
|
26 | 26 | \end{tabular}
|
27 |
| - \caption{Parameters of the single-phase DC inverter.} |
| 27 | + \caption{Parameters of the single-phase DC converter.} |
28 | 28 | \label{table:ex07_Task1_ParametersOfTheCircuit}
|
29 | 29 | \end{table}
|
30 |
| -The inverter is modulated using PWM with a modulation index of M=0.75. Assuming ideal operation of the switching components: |
| 30 | +The inverter is modulated using PWM with a modulation index of $m=0.75$. Assuming ideal operation of the switching components, perform the following tasks: |
31 | 31 | % Subtask1
|
32 |
| -\subtask{Draw the inverter output voltage $u_\mathrm{2}(t)$ belonging to figure \ref{sfig:ex07_sub1.1_modulation}. |
33 |
| -and its fundamental component $u^\mathrm{(1)}_\mathrm{2}(t)$. How large is the phase difference $\delta$ of the voltage |
34 |
| -fundamental component $u^\mathrm{(1)}_\mathrm{2}(t)$ compared to the internal load voltage $u_\mathrm{1e}$?} |
| 32 | +\subtask{Draw the inverter output voltage $u_\mathrm{2}(t)$ belonging to Fig. \ref{sfig:ex07_sub1.1_modulation}. |
| 33 | +and its fundamental component $u^\mathrm{(1)}_\mathrm{2}(t)$. How large is the phase difference $\varphi_{2\mathrm{i}}$ of the voltage |
| 34 | +fundamental component $u^\mathrm{(1)}_\mathrm{2}(t)$ compared to the internal load voltage $u_{2\mathrm{i}}(t)$?} |
35 | 35 |
|
36 | 36 | % Subtask2
|
37 | 37 | \subtask{Calculate the amplitude $\hat{i}^\mathrm{(1)}_\mathrm{2}$ and the phase angle $\varphi^\mathrm{(1)}$ of the
|
38 |
| -current fundamental wave $i^\mathrm{(1)}_\mathrm{2}(t)$ compared to $u_\mathrm{1e}$ and draw $u^\mathrm{(1)}_\mathrm{2}(t)$ |
| 38 | +current fundamental component $i^\mathrm{(1)}_\mathrm{2}(t)$ compared to $u_{2\mathrm{i}}(t)$ and draw $u^\mathrm{(1)}_\mathrm{2}(t)$ |
39 | 39 | and $i^\mathrm{(1)}_\mathrm{2}(t)$ in Fig. \ref{sfig:ex07_sub1.2_fund_components}.}
|
40 | 40 |
|
41 | 41 | % Subtask3
|
42 |
| -\subtask{In Fig. \ref{sfig:ex07_sub1.3_Harmonics}, draw the voltage harmonics $u^\mathrm{(n)}_\mathrm{2}(t)$. Try to sketch, approximately, |
43 |
| -the current harmonics $i^\mathrm{(n)}_\mathrm{2}(t)$ by counting the voltage time area squares. |
44 |
| -One square corresponds to a voltage time area of $\SI{17.8}{\milli \volt \second}$. The starting point is marked with \textbf{s}.\\ |
| 42 | +\subtask{In Fig. \ref{sfig:ex07_sub1.3_Harmonics}, draw the voltage harmonics $u^{(k)}_\mathrm{2}(t)$. Try to sketch, approximately, |
| 43 | +the current harmonics $i^{(k)}_\mathrm{2}(t)$ by counting the voltage time area squares. |
| 44 | +One square corresponds to a voltage time area of $\SI{17.8}{\milli \volt \second}$. The starting point is marked with \textbf{x}.\\ |
45 | 45 |
|
46 |
| -Hint: The current harmonics $i^\mathrm{(n)}_\mathrm{2}(t)$ have no mean values.} |
| 46 | +Hint: The current harmonics $i^{(k)}_\mathrm{2}(t)$ are free of any bias.} |
47 | 47 |
|
48 | 48 | % Subtask4
|
49 | 49 | \subtask{Draw the inverter's output current $i_\mathrm{2}(t)$, its fundamental wave $i^\mathrm{(1)}_\mathrm{2}(t)$
|
50 |
| -and its harmonics $i^\mathrm{(n)}_\mathrm{2}(t)$ in Fig. \ref{sfig:ex07_sub1.4_current_and_components}.} |
| 50 | +and its harmonics $i^{(k)}_\mathrm{2}(t)$ in Fig. \ref{sfig:ex07_sub1.4_current_and_components}.} |
51 | 51 |
|
52 | 52 | % Subtask5
|
53 |
| -\subtask{Mark the input current $i_\mathrm{i}(t)$ of the DC voltage inverter in the same figure of subtask 2.1.4.} |
| 53 | +\subtask{Mark the input current $i_\mathrm{i}(t)$ of the DC voltage inverter in the same figure of subtask 7.1.4.} |
54 | 54 | \input{fig/ex07/Fig_subtask1.1_modulation.tex}
|
55 | 55 | \input{fig/ex07/Fig_subtask1.2.tex}
|
56 | 56 | \input{fig/ex07/Fig_subtask1.3.tex}
|
|
0 commit comments