Skip to content

Commit cb72421

Browse files
[SilasElter][SilasElter]
[SilasElter]
authored and
[SilasElter]
committed
2 parents b577ee7 + 1ee9337 commit cb72421

File tree

2 files changed

+21
-21
lines changed

2 files changed

+21
-21
lines changed

lecture/main.ist

+1-1
Original file line numberDiff line numberDiff line change
@@ -1,5 +1,5 @@
11
% makeindex style file created by the glossaries package
2-
% for document 'main' on 2024-12-23
2+
% for document 'main' on 2024-12-24
33
actual '?'
44
encap '|'
55
level '!'

lecture/tex/Lecture05.tex

+20-20
Original file line numberDiff line numberDiff line change
@@ -79,13 +79,13 @@ \section{Thyristor-based converters}
7979
\begin{subfigure}{0.45\textwidth}
8080
\centering
8181
\includegraphics[height=0.45\textheight]{fig/lec05/Thyristor_example_01.jpg}
82-
\caption{top left: \SI{1000}{\volt}/\SI{200}{\ampere}; bottom left: \SI{1500}{\volt}/\SI{20}{\ampere}; right: \SI{1500}{\volt}/\SI{120}{\ampere}; 1N4007 diode for comparison (source: \href{https://de.wikipedia.org/wiki/Datei:SCR_power_rectifiers.jpg}{Wikimedia Commons}, \href{https://creativecommons.org/publicdomain/zero/1.0/}{CC0~1.0})}
82+
\caption{Top left: \SI{1000}{\volt}/\SI{200}{\ampere}; bottom left: \SI{1500}{\volt}/\SI{20}{\ampere}; right: \SI{1500}{\volt}/\SI{120}{\ampere}; 1N4007 diode for comparison (source: \href{https://de.wikipedia.org/wiki/Datei:SCR_power_rectifiers.jpg}{Wikimedia Commons}, \href{https://creativecommons.org/publicdomain/zero/1.0/}{CC0~1.0})}
8383
\end{subfigure}
8484
\hspace{1cm}
8585
\begin{subfigure}{0.45\textwidth}
8686
\centering
8787
\includegraphics[height=0.45\textheight]{fig/lec05/Thyristor_example_02.jpg}
88-
\caption{left: \SI{800}{\volt}/\SI{100}{\ampere}; right: \SI{800}{\volt}/\SI{13}{\ampere} (source: \href{https://de.wikipedia.org/wiki/Datei:Thyristors_thyristoren.jpg}{Wikimedia Commons}, Julo, \href{https://creativecommons.org/licenses/by-sa/3.0/deed.de}{CC0~BY-SA~3.0})}
88+
\caption{Left: \SI{800}{\volt}/\SI{100}{\ampere}; right: \SI{800}{\volt}/\SI{13}{\ampere} (source: \href{https://de.wikipedia.org/wiki/Datei:Thyristors_thyristoren.jpg}{Wikimedia Commons}, Julo, \href{https://creativecommons.org/licenses/by-sa/3.0/deed.de}{CC0~BY-SA~3.0})}
8989
\vspace{2em}
9090
\end{subfigure}
9191
\caption{Thyristor examples with different voltage and current ratings}
@@ -208,8 +208,7 @@ \subsection{M1C circuit}
208208
\begin{equation}
209209
\overline{u}_2 = \frac{1}{2\pi} \int_{\alpha}^{\pi} \hat{u}_1 \sin(\omega t) \mathrm{d} \omega t = \frac{\hat{u}_1}{2\pi} \left[ -\cos(\omega t) \right]_{\alpha}^{\pi} = \frac{\hat{u}_1}{2\pi} \left( 1 + \cos(\alpha) \right).
210210
\end{equation}
211-
Here, $\alpha$ denotes the phase angle at which the thyristor is triggered (aka \hl{firing angle}). In the M1C case, the feasible range for $\alpha$ is $[0,\nicefrac{\pi}{2}]$ applies as the thyristor requires a positive forward voltage to start conducting, that is, if $u_\mathrm{T}<0$ a firing impulse would not change its conduction state. The \hl{RMS value} of the output voltage is given by
212-
The \hl{RMS value} of the output voltage is given by
211+
Here, $\alpha$ denotes the phase angle at which the thyristor is triggered (aka \hl{firing angle}). In the M1C case, the feasible range for $\alpha$ is $[0,\nicefrac{\pi}{2}]$ as the thyristor requires a positive forward voltage to start conducting, that is, if $u_\mathrm{T}<0$ a firing impulse would not change its conduction state. The \hl{RMS value} of the output voltage is given by
213212
\begin{equation}
214213
U_2 = \sqrt{\frac{1}{2\pi} \int_{\alpha}^{\pi} \hat{u}_1^2 \sin^2(\omega t) \mathrm{d} \omega t} = \ldots = \frac{\hat{u}_1}{2} \sqrt{\frac{\pi - \alpha + \sin(\alpha)\cos(\alpha)}{\pi}}.
215214
\end{equation}
@@ -233,6 +232,12 @@ \subsection{M1C circuit}
233232
\onslide<10->{In contrast to the M1U rectifier, one can observe additional harmonic components due to additional distortion of the output voltage caused by the thyristor switching.}
234233
\end{frame}
235234

235+
236+
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
237+
%% M2C circuit %%
238+
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
239+
\subsection{M2C circuit}
240+
236241
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
237242
%% M2C controllable rectifier circuit %%
238243
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
@@ -314,11 +319,6 @@ \subsection{M1C circuit}
314319
\end{figure}
315320
\end{frame}
316321

317-
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
318-
%% M2C circuit %%
319-
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
320-
\subsection{M2C circuit}
321-
322322
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
323323
%% M2C converter: resistive load %%
324324
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
@@ -868,8 +868,8 @@ \subsection{Commutation}
868868
Here, $i_{T_1}(k\pi+\alpha)$ and $i_{T_2}(k\pi+\alpha)$ are the thyristor currents at the beginning of the commutation process during the $k$-th half cycle. One can distinguish two cases:
869869
\begin{equation*}
870870
\begin{alignedat}{3}
871-
i_{T_1}(k\pi+\alpha) &= 0, \quad i_{T_2}(k\pi+\alpha) &=i_2, \quad &\mbox{commutation from $T_1$ to $T_2$},\\
872-
i_{T_1}(k\pi+\alpha) &= i_2, \quad i_{T_2}(k\pi+\alpha) &= 0, \quad &\mbox{commutation from $T_2$ to $T_1$}.
871+
i_{T_1}(k\pi+\alpha) &= 0, \quad i_{T_2}(k\pi+\alpha) &=i_2, \quad &\mbox{commutation from $T_2$ to $T_1$},\\
872+
i_{T_1}(k\pi+\alpha) &= i_2, \quad i_{T_2}(k\pi+\alpha) &= 0, \quad &\mbox{commutation from $T_1$ to $T_2$}.
873873
\end{alignedat}
874874
\end{equation*}
875875
The commutation process ends when the thyristor currents reach $i_2$ and zero, respectively.
@@ -884,7 +884,7 @@ \subsection{Commutation}
884884
\begin{equation}
885885
i_{T_1}(\alpha+\kappa) = i_2 \stackrel{!}{=} \frac{u_\mathrm{s}}{L_\mathrm{c}\omega}\left(\cos(\alpha)-\cos(\alpha+\kappa)\right).
886886
\end{equation}
887-
The overlap angle $\kappa$ can be determined as
887+
Solving for the overlap angle $\kappa$ results in
888888
\begin{equation}
889889
\kappa = \arccos\left(\cos(\alpha) - \frac{i_2L_\mathrm{c}\omega}{u_\mathrm{s}}\right) - \alpha.
890890
\label{eq:overlap_angle_M2C}
@@ -1005,14 +1005,14 @@ \subsection{Commutation}
10051005
\begin{equation}
10061006
u_\mathrm{s}(\omega t) = 0, \qquad \omega t \in [k\pi+\alpha, k\pi+\alpha + \kappa].
10071007
\end{equation}
1008-
The output voltage lost in the process corresponds to
1008+
The output voltage loss in the process corresponds to
10091009
\begin{equation}
1010-
\Delta u = \frac{1}{\pi}\int_{\alpha}^{\alpha + \kappa} u_\mathrm{s}\sin(\omega t) \mathrm{d}(\omega t) = \frac{u_\mathrm{s}}{\pi}\left[-\cos(\omega t)\right]_{\alpha}^{\alpha + \kappa} = \frac{u_\mathrm{s}}{\pi}\left[\cos(\alpha) - \cos(\alpha + \kappa)\right].
1010+
\Delta u = \frac{1}{\pi}\int_{\alpha}^{\alpha + \kappa} \hat{u}_\mathrm{s}\sin(\omega t) \mathrm{d}(\omega t) = \frac{\hat{u}_\mathrm{s}}{\pi}\left[-\cos(\omega t)\right]_{\alpha}^{\alpha + \kappa} = \frac{\hat{u}_\mathrm{s}}{\pi}\left[\cos(\alpha) - \cos(\alpha + \kappa)\right].
10111011
\end{equation}
10121012
Inserting \eqref{eq:overlap_angle_M2C} for $\kappa$ yields
10131013
\begin{equation}
10141014
\begin{split}
1015-
\Delta u &= \frac{u_\mathrm{s}}{\pi}\left[\cos(\alpha) - \cos\left(\alpha + \arccos\left(\cos(\alpha) - \frac{i_2L_\mathrm{c}\omega}{u_\mathrm{s}}\right) - \alpha\right)\right]\\
1015+
\Delta u &= \frac{\hat{u}_\mathrm{s}}{\pi}\left[\cos(\alpha) - \cos\left(\alpha + \arccos\left(\cos(\alpha) - \frac{i_2L_\mathrm{c}\omega}{\hat{u}_\mathrm{s}}\right) - \alpha\right)\right]\\
10161016
&=\frac{i_2L_\mathrm{c}\omega}{\pi}.
10171017
\end{split}
10181018
\end{equation}
@@ -1123,7 +1123,7 @@ \subsection{Complex power analysis}
11231123
P_1 = \overline{p}_2 = I_2 \overline{u}_2 = I_2 \hat{u}_\mathrm{s} \frac{2}{\pi} \cos(\alpha) = I_2 \hat{u}_\mathrm{s0} \cos(\alpha)
11241124
\label{eq:active_power_M2C_output}
11251125
\end{equation}
1126-
with $\hat{u}_\mathrm{s0} = \hat{u}_\mathrm{s} \nicefrac{2}{\pi}$ being the \hl{maximum reachable output voltage} (for $\alpha=0$). From \eqref{eq:active_power_M2C_fundamental} the \hl{fundamental reactive power} can be determined as
1126+
with $\hat{u}_\mathrm{s0} = \hat{u}_\mathrm{s} \cdot \nicefrac{2}{\pi}$ being the \hl{maximum reachable output voltage} (for $\alpha=0$). From \eqref{eq:active_power_M2C_fundamental} the \hl{fundamental reactive power} can be determined as
11271127
\begin{equation}
11281128
Q_1^{(1)} = I_1^{(1)}U_1\sin(\varphi^{(1)}) = I_2 \hat{u}_\mathrm{s0} \sin(\alpha).
11291129
\end{equation}
@@ -1140,13 +1140,13 @@ \subsection{Complex power analysis}
11401140
\frametitle{M2C: reactive power diagram}
11411141
Rewriting the fundamental apparent power in terms of the active and reactive power yields:
11421142
\begin{equation}
1143-
\left(S_1^{(1)}\right)^2 = P_1^2 + \left(Q_1^{(1)}\right)^2 = I_2^2 \hat{u}^2_\mathrm{s0} \quad \Leftrightarrow \left(\frac{Q_1^{(1)}}{I_2 \hat{u}_\mathrm{s0}}\right)^2 + \left(\frac{P_1^2}{I_2 \hat{u}_\mathrm{s0}}\vphantom{\frac{Q_1^{(1)}}{I_2 \hat{u}_\mathrm{s0}}}\right)^2 = 1.
1143+
\left(S_1^{(1)}\right)^2 = \left(P_1\vphantom{Q_1^{(1)}}\right)^2 + \left(Q_1^{(1)}\right)^2 = I_2^2 \hat{u}^2_\mathrm{s0} \quad \Leftrightarrow \left(\frac{Q_1^{(1)}}{I_2 \hat{u}_\mathrm{s0}}\right)^2 + \left(\frac{P_1^2}{I_2 \hat{u}_\mathrm{s0}}\vphantom{\frac{Q_1^{(1)}}{I_2 \hat{u}_\mathrm{s0}}}\right)^2 = 1.
11441144
\end{equation}
11451145
Inserting $P_1 = I_2 \hat{u}_\mathrm{s0} \cos(\alpha)$ from \eqref{eq:active_power_M2C_output} finally yields the following circular equation
11461146
\begin{equation}
11471147
\left(\frac{Q_1^{(1)}}{I_2 \hat{u}_\mathrm{s0}}\right)^2 + \left(\cos(\alpha)\vphantom{\frac{Q_1^{(1)}}{I_2 \hat{u}_\mathrm{s0}}}\right)^2 = 1 \quad \Leftrightarrow \quad \left(\frac{Q_1^{(1)}}{S_1^{(1)}}\right)^2 + \left(\frac{\overline{u}_2}{\hat{u}_\mathrm{s0}}\vphantom{\frac{Q_1^{(1)}}{S_1^{(1)}}}\right)^2 = 1
11481148
\end{equation}
1149-
which can be visualized as a \hl{reactive power diagram} of the M2C converter -- compare \figref{fig:M2C_reactive_power_demand}.
1149+
which can be visualized as a \hl{reactive power diagram} of the M2C converter -- compare the upcoming \figref{fig:M2C_reactive_power_demand}.
11501150
\end{frame}
11511151

11521152
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
@@ -1428,14 +1428,14 @@ \subsection{Higher-pulse number converters}
14281428
\begin{itemize}
14291429
\item In contrast to diode-based rectifiers:
14301430
\begin{itemize}
1431-
\item Can be controlled by varying the firing angle $\alpha$ (within its feasible range).
1431+
\item Are \hl{controllable by varying the firing angle} $\alpha$ (within its feasible range).
14321432
\item Can transfer power in both directions (rectifier and inverter operation).
14331433
\end{itemize}
14341434
\item Likewise diode-based rectifiers:
14351435
\begin{itemize}
14361436
\item Introduce harmonics in the output voltage and input current (i.e., require filters).
14371437
\item Typically do not operate at unity power factor (require reactive power).
1438-
\item Are line-commutated, as the external grid voltage is required to achieve the commutation.
1438+
\item Are \hl{line-commutated}, as the external grid voltage is required to achieve the commutation.
14391439
\end{itemize}
14401440
\end{itemize}
14411441
Previous analyses based on diodes or thyristor-based converters were dealt with in varying detail level, but as they can be transferred analogously they are not explicitly shown due to time constraints. In addition, there are further interesting thyristor-based applications such as

0 commit comments

Comments
 (0)