1
+ import Notebook
2
+ import numpy as np
3
+ import pandas as pd
4
+ import matplotlib .pyplot as plt
5
+ import seaborn as sns
6
+
7
+ cleaned_portfolio , cleaned_profile , offers , transactions = Notebook .cleaning_data ()
8
+
9
+ ''' Exploratory Data Analysis '''
10
+
11
+ # To find out the maximum no of customer's belonging to which age group
12
+ def by_age_count (cleaned_profile ):
13
+ sns .countplot (x = "age_by_decade" ,data = cleaned_profile )
14
+
15
+ # Gender Distribution of our customer
16
+ def by_gender_count (cleaned_profile ):
17
+ '''cleaned_profile['F'].value_counts()
18
+ 0 8696
19
+ 1 6129
20
+
21
+ cleaned_profile['M'].value_counts()
22
+ 1 8484
23
+ 0 6341
24
+
25
+ cleaned_profile['O'].value_counts()
26
+ 0 14613
27
+ 1 212
28
+ '''
29
+ x = ["F" , "M" , "O" ]
30
+ y = [6129 ,8484 ,212 ]
31
+ plt .bar (x , y )
32
+
33
+ # An Overview of what income range facilitates more membership
34
+ def by_income_range (cleaned_profile ):
35
+ sns .countplot (x = "income_range" ,data = cleaned_profile )
36
+
37
+ def by_member_year (cleaned_profile ):
38
+ sns .countplot (x = "became_member_on" ,data = cleaned_profile )
39
+
40
+ # Comparing the Gender-wise distribution of our customer's income
41
+ def income_by_gender (cleaned_profile ):
42
+ x = cleaned_profile [cleaned_profile ['F' ]== 1 ]
43
+ y = cleaned_profile [cleaned_profile ['M' ]== 1 ]
44
+ z = cleaned_profile [cleaned_profile ['O' ]== 1 ]
45
+ sns .kdeplot (x ['income' ],label = 'Female' )
46
+ sns .kdeplot (y ['income' ],label = 'Male' )
47
+ sns .kdeplot (z ['income' ],label = 'Other' )
0 commit comments