-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
41 lines (36 loc) · 1.44 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import os
import torch
from torchcfm import ConditionalFlowMatcher
from torchcfm.models.unet import UNetModel
from torchvision import datasets
from torchvision.transforms import transforms
os.makedirs("checkpoints", exist_ok=True)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
batch_size = 128
n_epochs = 10
trainset = datasets.MNIST("./data", train=True, download=True,
transform=transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))]))
train_loader = torch.utils.data.DataLoader(trainset, batch_size=batch_size, shuffle=True, drop_last=True)
sigma = 0.0
model = UNetModel(dim=(1, 28, 28), num_channels=32, num_res_blocks=1, num_classes=10, class_cond=True).to(device)
optimizer = torch.optim.Adam(model.parameters())
FM = ConditionalFlowMatcher(sigma=sigma)
for epoch in range(n_epochs):
for i, data in enumerate(train_loader):
optimizer.zero_grad()
x1 = data[0].to(device)
y = data[1].to(device)
x0 = torch.randn_like(x1)
t, xt, ut = FM.sample_location_and_conditional_flow(x0, x1)
vt = model(t, xt, y)
loss = torch.mean((vt - ut) ** 2)
loss.backward()
optimizer.step()
print(f"epoch: {epoch}, steps: {i+1}, loss: {loss.item():.4}", end="\r")
checkpoint_path = os.path.join("checkpoints", f'epoch_{epoch + 1}.pth')
torch.save({
'epoch': epoch + 1,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'loss': loss.item()
}, checkpoint_path)