-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpreprocessing.py
131 lines (111 loc) · 5.6 KB
/
preprocessing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import libemg
import numpy as np
from numpy import mean, std
from parameters import BANDPASS_ORDER, FS, HF, LF, OUTLIER_REJECTION_STDS, TRIM
from scipy import signal
from scipy.signal import butter
class EMG_preprocessor():
def __init__(self, lf=LF, hf=HF, fs=FS, trim=TRIM, filter_order=BANDPASS_ORDER, outlier_rejection_stds=OUTLIER_REJECTION_STDS, baseline_signal=None, filter_type='band', library='libemg', num_sensors=5):
self.lf = lf
self.hf = hf
self.fs = fs
self.trim = trim
self.filter_order = filter_order
self.outlier_rejection_stds = outlier_rejection_stds
self.filter_type = filter_type
self.library = library
self.num_sensors = num_sensors
self.baseline_mean = [[0.0] for _ in range(num_sensors)]
self.baseline_noise = [[0.0] for _ in range(num_sensors)]
if baseline_signal is not None:
self.baseline_signal = [[] for _ in range(num_sensors)]
baseline_signal = np.array_split(baseline_signal, num_sensors, axis=1)
for i in range(num_sensors):
self.baseline_signal[i] = np.asarray(baseline_signal[i]).flatten()
print('Baseline signal provided')
self._calculate_baseline_noise(filter=True) # calculates baseline noise for each sensor
self._calculate_baseline_mean() # calculates baseline mean for each sensor
for i in range(num_sensors):
self.baseline_signal[i] = self.baseline_signal[i] - self.baseline_mean[i]
else:
self.baseline_signal = None
def calibrate(self, sensor_data):
self.library = self._maximize_SNR(sensor_data)
def preprocess(self, sensor_data, sensor_num):
if self.library == 'scipy':
return self._preprocess_data_scipy(sensor_data, sensor_num)
elif self.library == 'libemg':
return self._preprocess_data_libemg(sensor_data, sensor_num)
else:
return sensor_data
def _preprocess_data_libemg(self, data, sensor_num):
# instantiate the filter object with the sampling frequency
fi = libemg.filtering.Filter(self.fs)
# install filters to the filter object
fi.install_common_filters()
# run the entire first subject dataset through the common filters
raw_data = fi.filter(data)
return raw_data
# def _preprocess_data_emg_dsp_lib(self, data, sensor_num):
# ref_available = True if self.baseline_signal is not None else False
# self.emg_filter = EMG_filter(sample_frequency = self.fs, range_ = 0.5, min_EMG_frequency = self.lf, max_EMG_frequency = self.hf, reference_available = ref_available)
# sig = self.emg_filter.filter(data, self.baseline_signal[sensor_num].tolist())
# return sig
def _remove_mean(self, data):
return data - np.mean(data, axis=0)
def _preprocess_data_scipy(self, data, sensor_num):
data = self._apply_filter(data)
data = self._remove_artefact(data)
data = self._remove_outliers(data)
data = self._remove_mean(data)
if self.baseline_signal is not None:
data = self._subtract_baseline(data, sensor_num)
return data
def _preprocess_baseline_scipy(self, data):
data = self._apply_filter(data)
data = self._remove_artefact(data)
data = self._remove_outliers(data)
return data
def _apply_filter(self, data):
if self.filter_type == 'band':
return self._apply_bandpass_filter(data)
elif self.filter_type == 'highlow':
return self._apply_highpasslowpass_filter(data)
else:
return data
def _apply_bandpass_filter(self, data):
sos = butter(self.filter_order, (self.lf, self.hf), btype="bandpass", fs=self.fs, output="sos")
proc_data = signal.sosfilt(sos, data)
return proc_data
def _apply_highpasslowpass_filter(self, data):
sos = butter(self.filter_order, self.lf, btype="highpass", fs=self.fs, output="sos")
proc_data = signal.sosfilt(sos, data)
sos = butter(self.filter_order, self.hf, btype="lowpass", fs=self.fs, output="sos")
proc_data = signal.sosfilt(sos, proc_data)
return proc_data
def _remove_outliers(self, data):
raw_data = data.flatten()
data_mean, data_std = mean(raw_data), std(raw_data)
cut_off = data_std * self.outlier_rejection_stds
lower, upper = data_mean - cut_off, data_mean + cut_off
outliers_removed = [x if x >= lower and x <= upper else 0.0 for x in raw_data]
return outliers_removed
def _remove_artefact(self, data):
data[:self.trim] = 0
return data
def _calculate_baseline_mean(self):
for i in range(self.num_sensors):
self.baseline_mean[i] = np.mean(self.baseline_signal[i], axis=0)
def _calculate_baseline_noise(self, filter=False):
for i in range(self.num_sensors):
baseline_signal = self.baseline_signal[i]
if filter:
baseline_signal = self._preprocess_baseline_scipy(baseline_signal)
self.baseline_noise[i] = np.sqrt(np.sum(np.asanyarray(baseline_signal)**2)) / len(baseline_signal)
print('Baseline noise: ', self.baseline_noise[i])
def signaltonoise(self, signal, sensor_num):
power_signal = np.sqrt(np.sum(np.asanyarray(signal)**2)) / len(signal)
snr = 10 * np.log10(power_signal / self.baseline_noise[sensor_num])
return snr
def _subtract_baseline(self, data, sensor_num):
return data - self.baseline_signal[sensor_num]