forked from HackStyx/PathFinder
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathllm_main.py
143 lines (118 loc) · 5.87 KB
/
llm_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
#Main LLM / StreamLit File
import streamlit as st
import streamlit.components.v1 as components
from langchain_community.llms import Ollama
import re
import os
# Initialize the Ollama model
llm = Ollama(model="llama3") # Use the correct model name available in your Ollama setup
# Streamlit layout
st.set_page_config(page_title="Find Your Path", layout="wide")
def fetch_responses():
try:
file_path = r'C:\Users\PRINCE\Downloads\project\FlexStart (2)\FlexStart (2)\FlexStart (2)\FlexStart\question_final\data\llm_responses.txt'
if not os.path.isfile(file_path):
st.error(f"File not found: {file_path}")
return ""
with open(file_path, 'r', encoding='utf-8') as file:
text = file.read()
responses = text.split('\n')
formatted_response = "<br><br>".join(responses)
topics_regex = r"(\bCGPA\b|\bCourses_Completed\b|\bPreferred_Field\b|\bLearning_Style\b|\bDSA_Marks\b|\bDBMS_Marks\b|\bML_Marks\b|\bMicrocontroller_Marks\b|\bcareer goals\b|\brelevant courses\b)"
formatted_response = re.sub(topics_regex, r'<span class="highlight">\1</span>', formatted_response, flags=re.IGNORECASE)
link_regex = r"(https?://[^\s]+)"
formatted_response = re.sub(link_regex, r'<a href="\1" target="_blank">\1</a>', formatted_response)
return formatted_response
except Exception as e:
st.error(f"Error fetching the responses: {e}")
return ""
def fetch_lava_output():
try:
file_path = r'C:\Users\PRINCE\Downloads\chatbot\chatbot\lava_model_output.txt'
if not os.path.isfile(file_path):
st.error(f"File not found: {file_path}")
return ""
with open(file_path, 'r', encoding='utf-8') as file:
text = file.read()
return text
except Exception as e:
st.error(f"Error fetching the lava model output: {e}")
return ""
responses_html = fetch_responses()
lava_output = fetch_lava_output()
# Custom CSS for layout and styling
st.markdown("""
<style>
.main-content {
max-width: 800px;
margin-left: auto;
margin-right: 5%;
padding: 1rem;
}
.highlight {
padding: 2px 5px;
border-radius: 5px;
font-weight: bold;
}
.response a {
color: #e8491d;
text-decoration: none;
}
.response a:hover {
text-decoration: underline;
}
.stApp {
margin: 0;
padding: 0;
}
</style>
""", unsafe_allow_html=True)
# Create two columns
col1, col2 = st.columns([2, 3])
# Use the first column for the 3D model and lava model output
with col1:
st.markdown('<div class="main-content">', unsafe_allow_html=True)
st.title("How are you?")
# Embed the 3D model
components.html("""
<div class="sketchfab-embed-wrapper" style="overflow: hidden; height: 400px;">
<iframe title="Teacher Talking" frameborder="0" allowfullscreen mozallowfullscreen="true" webkitallowfullscreen="true" allow="autoplay; fullscreen; xr-spatial-tracking" xr-spatial-tracking execution-while-out-of-viewport execution-while-not-rendered web-share src="https://sketchfab.com/models/4a4ac47a40d84e0aa87707bcd28b081d/embed" style="width: 100%; height: 500px; transform: translateY(-8.5%);">
</iframe>
<p style="font-size: 13px; font-weight: normal; margin: 5px; color: #4A4A4A;">
<a href="https://sketchfab.com/3d-models/teacher-talking-4a4ac47a40d84e0aa87707bcd28b081d?utm_medium=embed&utm_campaign=share-popup&utm_content=4a4ac47a40d84e0aa87707bcd28b081d" target="_blank" rel="nofollow" style="font-weight: bold; color: #1CAAD9;"> Teacher Talking </a> by
<a href="https://sketchfab.com/mizsaidah?utm_medium=embed&utm_campaign=share-popup&utm_content=4a4ac47a40d84e0aa87707bcd28b081d" target="_blank" rel="nofollow" style="font-weight: bold; color: #1CAAD9;"> mizsaidah </a> on
<a href="https://sketchfab.com?utm_medium=embed&utm_campaign=share-popup&utm_content=4a4ac47a40d84e0aa87707bcd28b081d" target="_blank" rel="nofollow" style="font-weight: bold; color: #1CAAD9;">Sketchfab</a>
</p>
</div>
""", height=450)
if lava_output:
st.markdown(f'<div class="response" style="background: #000000; padding: 20px; margin: 15px 0; border-radius: 10px; font-size: 20px; line-height: 1.8; white-space: pre-wrap;">{lava_output}</div>', unsafe_allow_html=True)
else:
st.warning("No lava model output available.")
st.markdown('</div>', unsafe_allow_html=True)
# Use the second column for the main content
with col2:
st.markdown('<div class="main-content">', unsafe_allow_html=True)
st.title("PathFinder")
st.markdown("""
<div style="background: #50b3a2; color: #ffffff; padding: 30px 0; text-align: center; border-bottom: #e8491d 3px solid; border-radius: 10px 10px 0 0;">
<h1>Get your own path</h1>
</div>
""", unsafe_allow_html=True)
if responses_html:
st.markdown(f'<div class="response" style="background: #000000; padding: 20px; margin: 15px 0; border-radius: 10px; font-size: 20px; line-height: 1.8; white-space: pre-wrap;">{responses_html}</div>', unsafe_allow_html=True)
else:
st.warning("No responses available.")
prompt = st.text_area("Enter your prompt:")
if st.button("Generate"):
if prompt:
try:
with st.spinner("Generating response..."):
response_container = st.empty()
full_response = ""
for chunk in llm.stream(prompt):
full_response += chunk
response_container.markdown(full_response)
except Exception as e:
st.error(f"Error generating response: {e}")
st.markdown('</div>', unsafe_allow_html=True)