Skip to content

Commit 06cd8d0

Browse files
committed
Update README
1 parent b591de8 commit 06cd8d0

File tree

3 files changed

+21
-3
lines changed

3 files changed

+21
-3
lines changed

EFTNAS/README.md

+1-3
Original file line numberDiff line numberDiff line change
@@ -219,11 +219,9 @@ CUDA_VISIBLE_DEVICES=${DEVICES} torchrun --nproc_per_node=2 --master_port ${MAST
219219

220220
# Citation
221221

222-
If you use the code or data in your research, please use the following BibTex entry:
223-
224222
```
225223
@inproceedings{
226-
munoz2024eftnas,
224+
eftnas2024,
227225
title={Searching for Efficient Language Models in First-Order Weight-Reordered Super-Networks},
228226
author={J. Pablo Munoz and Yi Zheng and Nilesh Jain},
229227
booktitle={The 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation},

LoNAS/README.md

+14
Original file line numberDiff line numberDiff line change
@@ -119,4 +119,18 @@ CUDA_VISIBLE_DEVICES=${DEVICES} python run_math.py \
119119
--lora \
120120
--lora_weights trained_super_adapter/unified_math_10k/lonas-llama-7b \
121121
--nncf_config nncf_config/unified_math_10k/nncf_lonas_llama_7b.json
122+
```
123+
124+
125+
# Citation
126+
127+
```
128+
@inproceedings{
129+
lonas2024,
130+
title={LoNAS: Elastic Low-Rank Adapters for Efficient Large Language Models},
131+
author={J. Pablo Munoz and Jinjie Yuan and Yi Zheng and Nilesh Jain},
132+
booktitle={The 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation},
133+
year={2024},
134+
url={}
135+
}
122136
```

README.md

+6
Original file line numberDiff line numberDiff line change
@@ -10,6 +10,12 @@ EZNAS is a genetic programming-driven methodology for automatically discovering
1010

1111
BootstrapNAS automates the generation of weight-sharing super-networks using the Neural Network Compression Framework (NNCF).
1212

13+
### [LoNAS: Elastic Low-Rank Adapters for Efficient Large Language Models](./LoNAS/README.md)
14+
15+
Initial exploration of using NAS on large language models by exploring a search space of elastic low-rank adapters
16+
while reducing memory and compute requirements of full-scale NAS, resulting in high-performing compressed models obtained from
17+
weight-sharing super-networks. We investigate the benefits and limitations of this method, motivating follow-up work.
18+
1319
### [EFTNAS: Searching for Efficient Language Models in First-Order Weight-Reordered Super-Networks](./EFTNAS/README.md)
1420

1521
Integrating neural architecture search (NAS) and network pruning techniques, we effectively generate and train

0 commit comments

Comments
 (0)