|
25 | 25 | # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
26 | 26 |
|
27 | 27 | import sys
|
28 |
| -from numpy.testing import (TestCase, run_module_suite, assert_, |
29 |
| - assert_array_equal, assert_raises, dec) |
30 |
| -import mkl |
| 28 | +from numpy.testing import (TestCase, assert_, |
| 29 | + assert_array_equal, assert_raises) |
31 | 30 | import mkl_random as rnd
|
32 | 31 | from numpy.compat import long
|
33 | 32 | import numpy as np
|
@@ -117,8 +116,6 @@ def test_multivariate_normal_size_types(self):
|
117 | 116 | rnd.multivariate_normal([0], [[0]], size=np.int_(1))
|
118 | 117 | rnd.multivariate_normal([0], [[0]], size=np.int64(1))
|
119 | 118 |
|
120 |
| -# @dec.skipif(tuple(map(mkl.get_version().get, ['MajorVersion', 'UpdateVersion'])) == (2020,3), |
121 |
| -# msg="Intel(R) MKL 2020.3 produces NaN for these parameters") |
122 | 119 | def test_beta_small_parameters(self):
|
123 | 120 | # Test that beta with small a and b parameters does not produce
|
124 | 121 | # NaNs due to roundoff errors causing 0 / 0, gh-5851
|
@@ -173,7 +170,3 @@ def test_shuffle_of_array_of_objects(self):
|
173 | 170 | def test_non_central_chi_squared_df_one(self):
|
174 | 171 | a = rnd.noncentral_chisquare(df = 1.0, nonc=2.3, size=10**4)
|
175 | 172 | assert(a.min() > 0.0)
|
176 |
| - |
177 |
| - |
178 |
| -if __name__ == "__main__": |
179 |
| - run_module_suite() |
0 commit comments