|
25 | 25 | # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
26 | 26 |
|
27 | 27 | import sys |
28 | | -from numpy.testing import (TestCase, run_module_suite, assert_, |
29 | | - assert_array_equal, assert_raises, dec) |
30 | | -import mkl |
| 28 | +from numpy.testing import (TestCase, assert_, |
| 29 | + assert_array_equal, assert_raises) |
31 | 30 | import mkl_random as rnd |
32 | 31 | from numpy.compat import long |
33 | 32 | import numpy as np |
@@ -117,8 +116,6 @@ def test_multivariate_normal_size_types(self): |
117 | 116 | rnd.multivariate_normal([0], [[0]], size=np.int_(1)) |
118 | 117 | rnd.multivariate_normal([0], [[0]], size=np.int64(1)) |
119 | 118 |
|
120 | | -# @dec.skipif(tuple(map(mkl.get_version().get, ['MajorVersion', 'UpdateVersion'])) == (2020,3), |
121 | | -# msg="Intel(R) MKL 2020.3 produces NaN for these parameters") |
122 | 119 | def test_beta_small_parameters(self): |
123 | 120 | # Test that beta with small a and b parameters does not produce |
124 | 121 | # NaNs due to roundoff errors causing 0 / 0, gh-5851 |
@@ -173,7 +170,3 @@ def test_shuffle_of_array_of_objects(self): |
173 | 170 | def test_non_central_chi_squared_df_one(self): |
174 | 171 | a = rnd.noncentral_chisquare(df = 1.0, nonc=2.3, size=10**4) |
175 | 172 | assert(a.min() > 0.0) |
176 | | - |
177 | | - |
178 | | -if __name__ == "__main__": |
179 | | - run_module_suite() |
0 commit comments