-
Notifications
You must be signed in to change notification settings - Fork 73
/
Copy pathimplementation.py
367 lines (326 loc) · 13.1 KB
/
implementation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
# ===============================================================================
# Copyright 2024 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ===============================================================================
import argparse
import json
from typing import Dict, List
import openpyxl as xl
import pandas as pd
from openpyxl.formatting.rule import ColorScaleRule
from openpyxl.utils import get_column_letter
from openpyxl.utils.dataframe import dataframe_to_rows
from scipy.stats import gmean
from ..utils.common import custom_format, flatten_dict, flatten_list
from ..utils.logger import logger
from .compatibility import transform_results_to_compatible
METRICS = {
"lower is better": [
"time[ms]",
"iterations",
# classification
"logloss",
# regression
"RMSE",
# clustering
"inertia",
"Davies-Bouldin score",
# manifold
# - TSNE
"Kullback-Leibler divergence",
],
"higher is better": [
"throughput[samples/ms]",
# classification
"accuracy",
"balanced accuracy",
"ROC AUC",
# regression
"R2",
# clustering
"homogeneity",
"completeness",
# search
"recall@10",
],
"indifferent": [
# SVM
"support vectors",
# PCA
"average log-likelihood",
"1st component variance ratio",
# DBSCAN
# NB: 'n_clusters' is parameter of KMeans while
# 'clusters' is number of computer clusters by DBSCAN
"clusters",
],
"incomparable": ["time std[ms]"],
}
METRIC_NAMES = flatten_list([list(METRICS[key]) for key in METRICS])
PERF_METRICS = ["time[ms]", "throughput[samples/ms]"]
COLUMNS_ORDER = [
# algorithm
"stage",
"task",
"library",
"estimator",
"method",
"function",
"online_inference_mode",
"device",
"environment_name",
# data
"dataset",
"samples",
"features",
"feature_names",
"format",
"dtype",
"order",
"n_classes",
"class_distribution",
"n_clusters",
"batch_size",
"memory_usage",
]
DIFFBY_COLUMNS = ["environment_name", "library", "format", "device"]
def geomean_wrapper(a):
return gmean(a, nan_policy="omit")
def reorder_columns(input_columns: List, columns_order: List = COLUMNS_ORDER) -> List:
output_columns = list()
# 1st step: select existing columns from known ordered columns
for ordered_column in columns_order:
if ordered_column in input_columns:
output_columns.append(ordered_column)
input_columns.remove(ordered_column)
# 2nd step: add left input columns
output_columns += input_columns
return output_columns
def filter_nan_columns(input_df: pd.DataFrame):
output_df = input_df.copy()
non_nan_columns = output_df.columns[output_df.isna().mean(axis=0) < 1]
output_df = output_df[non_nan_columns]
return output_df
def split_df_by_columns(
input_df: pd.DataFrame, columns: List, remove_column: bool = True
) -> Dict[str, pd.DataFrame]:
split_columns = list(set(columns) & set(input_df.columns))
split_columns = reorder_columns(split_columns, columns)
value_counts = input_df.value_counts(split_columns, dropna=False, sort=False)
output_dfs = {}
for unique_values in value_counts.index:
index_mask = [
input_df[column] == unique_value
for column, unique_value in zip(value_counts.index.names, unique_values)
if not pd.isna(unique_value)
]
index_mask = pd.DataFrame(index_mask).all(axis=0)
subset_name = str(unique_values)[1:-1]
subset_name = subset_name.replace(", ", "|").replace(",", "").replace("'", "")
subset_name = subset_name.replace("nan|", "").replace("|nan", "")
output_dfs[subset_name] = filter_nan_columns(input_df.loc[index_mask])
if remove_column:
output_dfs[subset_name] = output_dfs[subset_name].drop(
columns=set(split_columns) & set(output_dfs[subset_name].columns)
)
output_dfs[subset_name] = output_dfs[subset_name][
reorder_columns(list(output_dfs[subset_name].columns))
]
return output_dfs
def compare_df(input_df, diff_columns, diffs_selection, compared_columns=METRIC_NAMES):
def select_comparison(i, j, diffs_selection):
if diffs_selection == "upper_triangle":
return j > i
elif diffs_selection == "lower_triangle":
return i > j
return i != j
index_columns = list(
(set(input_df.columns) - set(diff_columns)) - set(compared_columns)
)
df = input_df.set_index(index_columns)
unique_indices = df.index.unique()
splitted_dfs = split_df_by_columns(input_df, diff_columns)
splitted_dfs = {key: df.set_index(index_columns) for key, df in splitted_dfs.items()}
# drop results with duplicated indices (keep first entry only)
for key, splitted_df in splitted_dfs.items():
splitted_dfs[key] = splitted_df[~splitted_df.index.duplicated(keep="first")]
df = pd.DataFrame(index=unique_indices)
# original values
for key, splitted_df in splitted_dfs.items():
if len(set(splitted_df.columns) - set(compared_columns)) > 0:
raise ValueError
for column in splitted_df.columns:
df[f"{key}\n{column}"] = splitted_df[column]
# compared values
for i, (key_ith, df_ith) in enumerate(splitted_dfs.items()):
for j, (key_jth, df_jth) in enumerate(splitted_dfs.items()):
if select_comparison(i, j, diffs_selection):
comparison_name = f"{key_jth} vs {key_ith}"
for column in df_ith.columns:
if column in METRICS["higher is better"]:
df[f"{comparison_name}\n{column} relative improvement"] = (
df_jth[column] / df_ith[column]
)
elif column in METRICS["lower is better"]:
df[f"{comparison_name}\n{column} relative improvement"] = (
df_ith[column] / df_jth[column]
)
elif column in METRICS["indifferent"]:
df[f"{comparison_name}\n{column} is equal"] = (
df_ith[column] == df_jth[column]
)
df = df.reset_index()
# move to multi-index
df = df[reorder_columns(list(df.columns))]
df.columns = [
column if "\n" in column else f"parameter\n{column}" for column in df.columns
]
df.columns = pd.MultiIndex.from_tuples(
[tuple(column.split("\n")) for column in df.columns]
)
return df
def write_df_to_sheet(df, sheet, index=True, header=True):
for row in dataframe_to_rows(df, index=index, header=header):
if any(map(lambda x: x is not None, row)):
sheet.append(row)
def merge_result_files(filenames):
results = dict()
for result_name in filenames:
with open(result_name, "r") as fp:
result = json.load(fp)
for key, value in result.items():
if key in results:
if isinstance(value, list):
results[key] += value
elif isinstance(value, dict):
results[key].update(value)
else:
results[key] = value
return results
def get_result_tables_as_df(
results,
diffby_columns=DIFFBY_COLUMNS,
splitby_columns=["estimator", "method", "function"],
compatibility_mode=False,
):
bench_cases = pd.DataFrame(
[flatten_dict(bench_case) for bench_case in results["bench_cases"]]
)
if compatibility_mode:
bench_cases = transform_results_to_compatible(bench_cases)
for column in diffby_columns.copy():
if bench_cases[column].nunique() == 1:
bench_cases.drop(columns=[column], inplace=True)
diffby_columns.remove(column)
return split_df_by_columns(bench_cases, splitby_columns)
def get_summary_from_df(df: pd.DataFrame, df_name: str) -> pd.DataFrame:
metric_columns = list()
for column in list(df.columns):
for metric_name in METRIC_NAMES:
# only relative improvements are included in summary currently
if len(column) > 1 and column[1] == f"{metric_name} relative improvement":
metric_columns.append(column)
summary = df[metric_columns].aggregate(geomean_wrapper, axis=0).to_frame().T
summary.index = pd.Index([df_name])
return summary
def get_color_rule(scale):
red, yellow, green = "F85D5E", "FAF52E", "58C144"
start_value, mid_value, end_value = scale
return ColorScaleRule(
start_type="num",
start_value=start_value,
start_color=red,
mid_type="num",
mid_value=mid_value,
mid_color=yellow,
end_type="num",
end_value=end_value,
end_color=green,
)
def apply_rules_for_sheet(sheet, perf_color_scale, quality_color_scale):
for column in sheet.iter_cols():
column_idx = get_column_letter(column[0].column)
is_rel_impr = any(
[
isinstance(cell.value, str) and "relative improvement" in cell.value
for cell in column
]
)
is_time = any(
[
isinstance(cell.value, str)
and (any(map(lambda x: x in cell.value, PERF_METRICS)))
for cell in column
]
)
if is_rel_impr:
cell_range = f"${column_idx}1:${column_idx}{len(column)}"
sheet.conditional_formatting.add(
cell_range,
get_color_rule(perf_color_scale if is_time else quality_color_scale),
)
def write_environment_info(results, workbook):
env_infos = results["environment"]
for env_name, env_info in env_infos.items():
for info_type, info_subclass in env_info.items():
new_ws = workbook.create_sheet(title=f"{info_type}|{env_name}"[:31])
for sub_key, sub_info in info_subclass.items():
if isinstance(sub_info, dict):
if all(
map(
lambda x: not (isinstance(x, list) or isinstance(x, dict)),
sub_info.values(),
)
):
info_df = pd.Series(sub_info).to_frame()
else:
info_df = pd.DataFrame(sub_info).T
elif isinstance(sub_info, list):
info_df = pd.DataFrame(sub_info)
else:
continue
write_df_to_sheet(info_df, new_ws)
new_ws.append([None])
def generate_report(args: argparse.Namespace):
logger.setLevel(args.report_log_level)
results = merge_result_files(args.result_files)
diffby, splitby = args.diff_columns, args.split_columns
dfs = get_result_tables_as_df(results, diffby, splitby, args.compatibility_mode)
wb = xl.Workbook()
summary_dfs = list()
for df_name, df in dfs.items():
drop_columns = list(set(df.columns) & set(args.drop_columns))
df = df.drop(columns=drop_columns)
ws = wb.create_sheet(title=df_name[:30])
if len(diffby) > 0:
current_df = compare_df(df, diffby, args.diffs_selection)
else:
current_df = df
write_df_to_sheet(current_df, ws, index=False)
apply_rules_for_sheet(ws, args.perf_color_scale, args.quality_color_scale)
summary_dfs.append(get_summary_from_df(current_df, df_name))
# write summary to corresponding sheet
summary_df = pd.concat(summary_dfs, axis=0, join="outer")
summary_df = summary_df[summary_df.columns.sortlevel(level=0, ascending=False)[0]]
logger.info(f"{custom_format('Report summary', bcolor='HEADER')}\n{summary_df}")
if summary_df.size > 0:
summary_ws = wb.create_sheet(title="Summary", index=0)
write_df_to_sheet(summary_df, summary_ws)
apply_rules_for_sheet(summary_ws, args.perf_color_scale, args.quality_color_scale)
# write environment info
write_environment_info(results, wb)
# remove default sheet
wb.remove(wb["Sheet"])
wb.save(args.report_file)
return 0