-
Notifications
You must be signed in to change notification settings - Fork 73
/
Copy pathspecial_params.py
291 lines (270 loc) · 12.2 KB
/
special_params.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
# ===============================================================================
# Copyright 2024 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ===============================================================================
from copy import deepcopy
from math import ceil
from typing import Dict, List
import numpy as np
import pandas as pd
from psutil import cpu_count
from sklearn.metrics import euclidean_distances
from ..datasets import dataset_loading_functions
from .bench_case import get_bench_case_value, set_bench_case_value
from .common import convert_to_numpy, flatten_list
from .custom_types import BenchCase, BenchTemplate
from .env import get_numa_cpus_conf
from .logger import logger
SP_VALUE_STR = "[SPECIAL_VALUE]"
def is_special_value(value) -> bool:
return isinstance(value, str) and value.startswith(SP_VALUE_STR)
def float_range(start,stop,step):
while start < stop:
yield start
start += step
def explain_range(range_str: str) -> List:
def check_range_values_size(range_values: List[int], size: int):
if len(range_values) != size:
raise ValueError(
f"Range contains {len(range_values)} " f"numeric values instead of {size}"
)
range_values = range_str.replace("[RANGE]", "").split(":")
# TODO: add float values
range_type = range_values[0]
#range_values = list(map(int, range_values[1:]))
range_values = list(map(float, range_values[1:]))
# - add:start{int}:end{int}:step{int} - Arithmetic progression
# Sequence: start + step * i <= end
if range_type == "add":
check_range_values_size(range_values, 3)
start, end, step = range_values
#return list(range(start, end + step, step))
return list(float_range(start, end + step, step))
# - mul:current{int}:end{int}:step{int} - Geometric progression
# Sequence: current * step <= end
elif range_type == "mul":
check_range_values_size(range_values, 3)
current, end, step = range_values
result = list()
while current <= end:
result.append(current)
current *= step
return result
# - pow:base{int}:start{int}:end{int}[:step{int}] - Powers of base number
elif range_type == "pow":
# add default step = 1 if not defined
if len(range_values) < 4:
range_values.append(1)
check_range_values_size(range_values, 4)
base, start, end, step = range_values
#return [base**i for i in range(start, end + step, step)]
return [base**i for i in float_range(start, end + step, step)]
else:
raise ValueError(f'Unknown "{range_type}" range type')
def assign_template_special_values(template: BenchTemplate) -> BenchTemplate:
# data:dataset special values
datasets = deepcopy(get_bench_case_value(template, "data:dataset"))
if datasets is not None:
if not isinstance(datasets, list):
datasets = [datasets]
# `all_named` is equal to all datasets known by data loaders
all_named_datasets = list(dataset_loading_functions.keys())
for i, dataset in enumerate(datasets):
if is_special_value(dataset):
dataset = dataset.replace(SP_VALUE_STR, "")
if dataset == "all_named":
datasets[i] = all_named_datasets
datasets = flatten_list(datasets, ensure_type_homogeneity=True)
set_bench_case_value(template, "data:dataset", datasets)
return template
def assign_case_special_values_on_generation(bench_case: BenchCase) -> BenchCase:
# sklearn.datasets.make_classification: n_informative as ratio of n_features
n_informative = get_bench_case_value(
bench_case, "data:generation_kwargs:n_informative"
)
if is_special_value(n_informative):
n_informative = float(n_informative.replace(SP_VALUE_STR, ""))
if n_informative <= 0.0 or n_informative > 1.0:
raise ValueError(f'Wrong special value "{n_informative}" for n_informative')
n_features = get_bench_case_value(bench_case, "data:generation_kwargs:n_features")
if n_features is None:
raise ValueError(
'"n_features" is not specified for special value of "n_informative"'
)
set_bench_case_value(
bench_case,
"data:generation_kwargs:n_informative",
ceil(n_informative * n_features),
)
# taskset
taskset = get_bench_case_value(bench_case, "bench:taskset")
if is_special_value(taskset):
taskset = taskset.replace(SP_VALUE_STR, "")
# special value format for numa nodes: "numa:{numa_node_0}[|{numa_node_1}...]"
if taskset.startswith("numa"):
numa_nodes = list(map(int, taskset.split(":")[1].split("|")))
numa_cpus_conf = get_numa_cpus_conf()
taskset = ",".join([numa_cpus_conf[numa_node] for numa_node in numa_nodes])
set_bench_case_value(bench_case, "bench:taskset", taskset)
# remove requested parameters from the case
def traverse_with_removal(case: BenchCase):
for key, value in list(case.items()):
if isinstance(value, dict):
traverse_with_removal(value)
elif isinstance(value, str) and value == "[REMOVE]":
del case[key]
traverse_with_removal(bench_case)
return bench_case
def get_ratio_from_n_jobs(n_jobs: str) -> float:
args = n_jobs.split(":")
if len(args) == 1:
return 1.0
elif len(args) == 2:
return float(args[1])
else:
raise ValueError(f'Wrong arguments {args} in "n_jobs" special value')
def assign_case_special_values_on_run(
bench_case: BenchCase, data, data_description: Dict
):
# Note: data = (x_train, y_train, x_test, y_train)
library = get_bench_case_value(bench_case, "algorithm:library", None)
estimator = get_bench_case_value(bench_case, "algorithm:estimator", None)
# device-related parameters assignment
device = get_bench_case_value(bench_case, "algorithm:device", "default")
if device != "default":
# xgboost tree method assignment branch
if library == "xgboost" and estimator in ["XGBRegressor", "XGBClassifier"]:
if device == "cpu" or any(map(device.startswith, ["gpu", "cuda"])):
logger.debug(
f"Forwaring device '{device}' to XGBoost estimator parameters"
)
set_bench_case_value(
bench_case, "algorithm:estimator_params:device", device
)
else:
raise ValueError(f"Unknown device '{device}' for xgboost {estimator}")
# set target offload for execution context
elif library.startswith("sklearnex") or library.startswith("daal4py"):
if device == "cpu":
logger.debug(
"Skipping setting of 'target_offload' for CPU device "
"to avoid extra overheads"
)
else:
set_bench_case_value(
bench_case, "algorithm:sklearnex_context:target_offload", device
)
# faiss GPU algorithm selection
elif library == "sklbench.emulators.faiss" and estimator == "NearestNeighbors":
set_bench_case_value(bench_case, "algorithm:estimator_params:device", device)
else:
logger.warning(f'Device specification "{device}" is not used for this case')
# assign "default" or changed device for output
tree_method = get_bench_case_value(
bench_case, "algorithm:estimator_params:tree_method", None
)
if tree_method == "gpu_hist":
device = "gpu"
set_bench_case_value(bench_case, "algorithm:device", device)
# n_jobs
n_jobs = get_bench_case_value(bench_case, "algorithm:estimator_params:n_jobs", None)
if is_special_value(n_jobs):
n_jobs = n_jobs.replace(SP_VALUE_STR, "")
if n_jobs.startswith("physical_cpus"):
n_cpus = cpu_count(logical=False)
elif n_jobs.startswith("logical_cpus"):
n_cpus = cpu_count(logical=True)
else:
raise ValueError(f'Unknown special value {n_jobs} for "n_jobs"')
n_jobs = int(n_cpus * get_ratio_from_n_jobs(n_jobs))
set_bench_case_value(bench_case, "algorithm:estimator_params:n_jobs", n_jobs)
# classes balance for XGBoost
scale_pos_weight = get_bench_case_value(
bench_case, "algorithm:estimator_params:scale_pos_weight", None
)
if (
is_special_value(scale_pos_weight)
and scale_pos_weight.replace(SP_VALUE_STR, "") == "auto"
and library == "xgboost"
and estimator == "XGBClassifier"
):
y_train = convert_to_numpy(data[1])
value_counts = pd.value_counts(y_train).sort_index()
if len(value_counts) != 2:
logger.info(
f"Number of classes ({len(value_counts)}) != 2 "
'while "scale_pos_weight" is set to "auto". '
"This parameter is removed from estimator parameters."
)
set_bench_case_value(
bench_case, "algorithm:estimator_params:scale_pos_weight", None
)
else:
scale_pos_weight = value_counts.iloc[0] / value_counts.iloc[1]
set_bench_case_value(
bench_case,
"algorithm:estimator_params:scale_pos_weight",
scale_pos_weight,
)
# "n_clusters" auto assignment from data description
n_clusters = get_bench_case_value(
bench_case, "algorithm:estimator_params:n_clusters", None
)
if is_special_value(n_clusters) and n_clusters.replace(SP_VALUE_STR, "") == "auto":
n_clusters = data_description.get("n_clusters", None)
n_classes = data_description.get("n_classes", None)
n_clusters_per_class = data_description.get("n_clusters_per_class", 1)
if n_clusters is not None:
if isinstance(n_clusters, int):
set_bench_case_value(
bench_case, "algorithm:estimator_params:n_clusters", n_clusters
)
else:
raise ValueError(
f"n_clusters={n_clusters} of type {type(n_clusters)} "
"from data description is not integer."
)
elif n_classes is not None:
set_bench_case_value(
bench_case,
"algorithm:estimator_params:n_clusters",
n_classes * n_clusters_per_class,
)
else:
raise ValueError(
"Unable to auto-assign n_clusters: "
"data description doesn't have n_clusters or n_classes"
)
# "eps" auto assignment for DBSCAN
eps = get_bench_case_value(bench_case, "algorithm:estimator_params:eps", None)
if is_special_value(eps) and eps.replace(SP_VALUE_STR, "").startswith(
"distances_quantile"
):
x_train = convert_to_numpy(data[0])
quantile = float(eps.replace(SP_VALUE_STR, "").split(":")[1])
# subsample of x_train is used to avoid reaching of memory limit for large matrices
subsample = list(getattr(x_train, "index", np.arange(x_train.shape[0])))
np.random.seed(42)
np.random.shuffle(subsample)
subsample = subsample[: min(x_train.shape[0], 1000)]
x_sample = (
x_train.loc[subsample] if hasattr(x_train, "loc") else x_train[subsample]
)
# conversion to lower precision is required
# to produce same distances quantile for different dtypes of x
x_sample = x_sample.astype("float32")
dist = np.tril(euclidean_distances(x_sample, x_sample)).reshape(-1)
dist = dist[dist != 0]
quantile = float(np.quantile(dist, quantile))
set_bench_case_value(bench_case, "algorithm:estimator_params:eps", quantile)