@@ -44,12 +44,18 @@ def main():
44
44
if params .probability :
45
45
state_predict = 'predict_proba'
46
46
clf_predict = clf .predict_proba
47
- y_proba_train = clf_predict (X_train )
48
- y_proba_test = clf_predict (X_test )
49
- train_log_loss = bench .log_loss (y_train , y_proba_train )
50
- test_log_loss = bench .log_loss (y_test , y_proba_test )
51
- train_roc_auc = bench .roc_auc_score (y_train , y_proba_train )
52
- test_roc_auc = bench .roc_auc_score (y_test , y_proba_test )
47
+ train_acc = None
48
+ test_acc = None
49
+
50
+ predict_train_time , y_pred = bench .measure_function_time (
51
+ clf_predict , X_train , params = params )
52
+ train_log_loss = bench .log_loss (y_train , y_pred )
53
+ train_roc_auc = bench .roc_auc_score (y_train , y_pred )
54
+
55
+ _ , y_pred = bench .measure_function_time (
56
+ clf_predict , X_test , params = params )
57
+ test_log_loss = bench .log_loss (y_test , y_pred )
58
+ test_roc_auc = bench .roc_auc_score (y_test , y_pred )
53
59
else :
54
60
state_predict = 'prediction'
55
61
clf_predict = clf .predict
@@ -58,13 +64,13 @@ def main():
58
64
train_roc_auc = None
59
65
test_roc_auc = None
60
66
61
- predict_train_time , y_pred = bench .measure_function_time (
62
- clf_predict , X_train , params = params )
63
- train_acc = bench .accuracy_score (y_train , y_pred )
67
+ predict_train_time , y_pred = bench .measure_function_time (
68
+ clf_predict , X_train , params = params )
69
+ train_acc = bench .accuracy_score (y_train , y_pred )
64
70
65
- _ , y_pred = bench .measure_function_time (
66
- clf_predict , X_test , params = params )
67
- test_acc = bench .accuracy_score (y_test , y_pred )
71
+ _ , y_pred = bench .measure_function_time (
72
+ clf_predict , X_test , params = params )
73
+ test_acc = bench .accuracy_score (y_test , y_pred )
68
74
69
75
bench .print_output (
70
76
library = 'sklearn' ,
0 commit comments