-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathidtr.cpp
1446 lines (1292 loc) · 51.8 KB
/
idtr.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// SPDX-License-Identifier: BSD-3-Clause
/*
Intel Distributed Runtime for MLIR
*/
#include <sharpy/MPITransceiver.hpp>
#include <sharpy/MemRefType.hpp>
#include <sharpy/NDArray.hpp>
#include <sharpy/UtilsAndTypes.hpp>
#include <imex/Dialect/NDArray/IR/NDArrayDefs.h>
#include <cassert>
#include <iostream>
#include <memory>
#include <unordered_map>
#define STRINGIFY(a) #a
constexpr id_t UNKNOWN_GUID = -1;
using container_type =
std::unordered_map<SHARPY::id_type, std::unique_ptr<SHARPY::NDArray>>;
static container_type garrays;
static SHARPY::id_type _nguid = -1;
inline SHARPY::id_type get_guid() { return ++_nguid; }
static bool skip_comm = get_bool_env("SHARPY_SKIP_COMM");
static bool no_async = get_bool_env("SHARPY_NO_ASYNC");
// Transceiver * theTransceiver = MPITransceiver();
template <typename T> T *mr_to_ptr(void *ptr, intptr_t offset) {
if (!ptr) {
throw std::invalid_argument("Fatal: cannot handle offset on nullptr");
}
return reinterpret_cast<T *>(ptr) + offset;
}
// abstract handle providing an abstract wait method
struct WaitHandleBase {
virtual ~WaitHandleBase(){};
virtual void wait() = 0;
};
// concrete handle to be instantiated with a lambda or alike
// the lambda will be executed within wait()
template <typename T> class WaitHandle : public WaitHandleBase {
T _fini;
public:
WaitHandle(T &&fini) : _fini(std::move(fini)) {}
virtual void wait() override { _fini(); }
};
template <typename T> WaitHandle<T> *mkWaitHandle(T &&fini) {
return new WaitHandle<T>(std::move(fini));
};
extern "C" {
void _idtr_wait(WaitHandleBase *handle) {
if (handle) {
handle->wait();
delete handle;
}
}
#define NO_TRANSCEIVER
#ifdef NO_TRANSCEIVER
static void initMPIRuntime() {
if (SHARPY::getTransceiver() == nullptr)
SHARPY::init_transceiver(new SHARPY::MPITransceiver(false));
}
#endif
// Return number of ranks/processes in given team/communicator
uint64_t idtr_nprocs(SHARPY::Transceiver *tc) {
#ifdef NO_TRANSCEIVER
initMPIRuntime();
tc = SHARPY::getTransceiver();
#endif
return tc ? tc->nranks() : 1;
}
#pragma weak _idtr_nprocs = idtr_nprocs
#pragma weak _mlir_ciface__idtr_nprocs = idtr_nprocs
// Return rank in given team/communicator
uint64_t idtr_prank(SHARPY::Transceiver *tc) {
#ifdef NO_TRANSCEIVER
initMPIRuntime();
tc = SHARPY::getTransceiver();
#endif
return tc ? tc->rank() : 0;
}
#pragma weak _idtr_prank = idtr_prank
#pragma weak _mlir_ciface__idtr_prank = idtr_prank
// Register a global array of given shape.
// Returns guid.
// The runtime does not own or manage any memory.
id_t idtr_init_array(const uint64_t *shape, uint64_t nD) {
auto guid = get_guid();
// garrays[guid] = std::unique_ptr<SHARPY::NDArray>(nD ? new
// SHARPY::NDArray(shape, nD) : new SHARPY::NDArray);
return guid;
}
id_t _idtr_init_array(void *alloced, void *aligned, intptr_t offset,
intptr_t size, intptr_t stride, uint64_t nD) {
return idtr_init_array(mr_to_ptr<uint64_t>(aligned, offset), nD);
}
// Get the offsets (one for each dimension) of the local partition of a
// distributed array in number of elements. Result is stored in provided array.
void idtr_local_offsets(id_t guid, uint64_t *offsets, uint64_t nD) {
#if 0
const auto & tnsr = garrays.at(guid);
auto slcs = tnsr->slice().local_slice().slices();
assert(nD == slcs.size());
int i = -1;
for(auto s : slcs) {
offsets[++i] = s._start;
}
#endif
}
void _idtr_local_offsets(id_t guid, void *alloced, void *aligned,
intptr_t offset, intptr_t size, intptr_t stride,
uint64_t nD) {
idtr_local_offsets(guid, mr_to_ptr<uint64_t>(aligned, offset), nD);
}
// Get the shape (one size for each dimension) of the local partition of a
// distributed array in number of elements. Result is stored in provided array.
void idtr_local_shape(id_t guid, uint64_t *lshape, uint64_t N) {
#if 0
const auto & tnsr = garrays.at(guid);
auto shp = tnsr->slice().local_slice().shape();
std::copy(shp.begin(), shp.end(), lshape);
#endif
}
void _idtr_local_shape(id_t guid, void *alloced, void *aligned, intptr_t offset,
intptr_t size, intptr_t stride, uint64_t nD) {
idtr_local_shape(guid, mr_to_ptr<uint64_t>(aligned, offset), nD);
}
} // extern "C"
// convert id of our reduction op to id of imex::ndarray reduction op
static SHARPY::ReduceOpId mlir2sharpy(const ::imex::ndarray::ReduceOpId rop) {
switch (rop) {
case ::imex::ndarray::MEAN:
return SHARPY::MEAN;
case ::imex::ndarray::PROD:
return SHARPY::PROD;
case ::imex::ndarray::SUM:
return SHARPY::SUM;
case ::imex::ndarray::STD:
return SHARPY::STD;
case ::imex::ndarray::VAR:
return SHARPY::VAR;
case ::imex::ndarray::MAX:
return SHARPY::MAX;
case ::imex::ndarray::MIN:
return SHARPY::MIN;
default:
throw std::invalid_argument("Unknown reduction operation");
}
}
// convert element type/dtype from MLIR to sharpy
[[maybe_unused]] static SHARPY::DTypeId
mlir2sharpy(const ::imex::ndarray::DType dt) {
switch (dt) {
case ::imex::ndarray::DType::F64:
return SHARPY::FLOAT64;
break;
case ::imex::ndarray::DType::I64:
return SHARPY::INT64;
break;
case ::imex::ndarray::DType::U64:
return SHARPY::UINT64;
break;
case ::imex::ndarray::DType::F32:
return SHARPY::FLOAT32;
break;
case ::imex::ndarray::DType::I32:
return SHARPY::INT32;
break;
case ::imex::ndarray::DType::U32:
return SHARPY::UINT32;
break;
case ::imex::ndarray::DType::I16:
return SHARPY::INT16;
break;
case ::imex::ndarray::DType::U16:
return SHARPY::UINT16;
break;
case ::imex::ndarray::DType::I8:
return SHARPY::INT8;
break;
case ::imex::ndarray::DType::U8:
return SHARPY::UINT8;
break;
case ::imex::ndarray::DType::I1:
return SHARPY::BOOL;
break;
default:
throw std::invalid_argument("unknown dtype");
};
}
/// copy possibly strided array into a contiguous block of data
void bufferize(void *cptr, SHARPY::DTypeId dtype, const int64_t *sizes,
const int64_t *strides, const int64_t *tStarts,
const int64_t *tSizes, uint64_t nd, uint64_t N, void *out) {
if (!cptr || !sizes || !strides || !tStarts || !tSizes) {
return;
}
dispatch(dtype, cptr,
[sizes, strides, tStarts, tSizes, nd, N, out](auto *ptr) {
auto buff = static_cast<decltype(ptr)>(out);
for (auto i = 0ul; i < N; ++i) {
auto szs = &tSizes[i * nd];
if (szs[0] > 0) {
auto sts = &tStarts[i * nd];
uint64_t off = 0;
for (auto r = 0ul; r < nd; ++r) {
off += sts[r] * strides[r];
}
SHARPY::forall(0, &ptr[off], szs, strides, nd,
[&buff](const auto *in) {
*buff = *in;
++buff;
});
}
}
});
}
/// copy contiguous block of data into a possibly strided array distributed to N
/// ranks
void unpackN(void *in, SHARPY::DTypeId dtype, const int64_t *sizes,
const int64_t *strides, const int64_t *tStarts,
const int64_t *tSizes, uint64_t nd, uint64_t N, void *out) {
if (!in || !sizes || !strides || !tStarts || !tSizes || !out) {
return;
}
dispatch(dtype, out, [sizes, strides, tStarts, tSizes, nd, N, in](auto *ptr) {
auto buff = static_cast<decltype(ptr)>(in);
for (auto i = 0ul; i < N; ++i) {
auto szs = &tSizes[i * nd];
if (szs[0] > 0) {
auto sts = &tStarts[i * nd];
uint64_t off = 0;
for (auto r = 0ul; r < nd; ++r) {
off += sts[r] * strides[r];
}
SHARPY::forall(0, &ptr[off], szs, strides, nd, [&buff](auto *out) {
*out = *buff;
++buff;
});
}
}
});
}
/// copy contiguous block of data into a possibly strided array
void unpack(void *in, SHARPY::DTypeId dtype, const int64_t *sizes,
const int64_t *strides, uint64_t ndim, void *out) {
if (!in || !sizes || !strides || !out) {
return;
}
dispatch(dtype, out, [sizes, strides, ndim, in](auto *out_) {
auto in_ = static_cast<decltype(out_)>(in);
SHARPY::forall(0, out_, sizes, strides, ndim, [&in_](auto *out) {
*out = *in_;
++in_;
});
});
}
template <typename T>
void copy_(uint64_t d, uint64_t &pos, T *cptr, const int64_t *sizes,
const int64_t *strides, const uint64_t *chunks, uint64_t nd,
uint64_t start, uint64_t end, T *&out) {
if (!cptr || !sizes || !strides || !chunks || !out) {
return;
}
auto stride = strides[d];
uint64_t sz = sizes[d];
uint64_t chunk = chunks[d];
uint64_t first = 0;
if (pos < start) {
first = (start - pos) / chunk;
pos += first * chunk;
cptr += first * stride;
assert(pos <= start && pos < end);
}
if (d == nd - 1) {
auto n = std::min(sz - first, end - pos);
if (stride == 1) {
memcpy(out, cptr, n * sizeof(T));
} else {
for (auto i = 0ul; i < n; ++i) {
out[i] = cptr[i * stride];
}
}
pos += n;
out += n;
} else {
for (auto i = first; i < sz; ++i) {
copy_<T>(d + 1, pos, cptr, sizes, strides, chunks, nd, start, end, out);
if (pos >= end)
return;
cptr += stride;
}
}
}
/// copy a number of array elements into a contiguous block of data
void bufferizeN(uint64_t nd, void *cptr, const int64_t *sizes,
const int64_t *strides, SHARPY::DTypeId dtype, uint64_t N,
const int64_t *tStarts, const int64_t *tEnds, void *out) {
if (!cptr || !sizes || !strides || !tStarts || !tEnds || !out) {
return;
}
std::vector<uint64_t> chunks(nd);
chunks[nd - 1] = 1;
for (uint64_t i = 1; i < nd; ++i) {
auto j = nd - i;
chunks[j - 1] = chunks[j] * sizes[j];
}
dispatch(dtype, cptr,
[sizes, strides, tStarts, tEnds, nd, N, out, &chunks](auto *ptr) {
auto buff = static_cast<decltype(ptr)>(out);
for (auto i = 0ul; i < N; ++i) {
auto start = tStarts[i];
auto end = tEnds[i];
if (end > start) {
uint64_t pos = 0;
copy_(0, pos, ptr, sizes, strides, chunks.data(), nd, start,
end, buff);
}
}
});
}
using MRIdx1d = SHARPY::Unranked1DMemRefType<int64_t>;
// FIXME hard-coded for contiguous layout
template <typename T>
void _idtr_reduce_all(int64_t dataRank, void *dataDescr, int op) {
auto tc = SHARPY::getTransceiver();
if (!tc)
return;
SHARPY::UnrankedMemRefType<T> data(dataRank, dataDescr);
assert(dataRank == 0 || (dataRank == 1 && data.strides()[0] == 1));
auto d = data.data();
auto t = SHARPY::DTYPE<T>::value;
auto r = dataRank ? data.sizes()[0] : 1;
auto o = mlir2sharpy(static_cast<imex::ndarray::ReduceOpId>(op));
tc->reduce_all(d, t, r, o);
}
extern "C" {
#define TYPED_REDUCEALL(_sfx, _typ) \
void _idtr_reduce_all_##_sfx(int64_t dataRank, void *dataDescr, int op) { \
_idtr_reduce_all<_typ>(dataRank, dataDescr, op); \
} \
_Pragma(STRINGIFY(weak _mlir_ciface__idtr_reduce_all_##_sfx = \
_idtr_reduce_all_##_sfx))
TYPED_REDUCEALL(f64, double);
TYPED_REDUCEALL(f32, float);
TYPED_REDUCEALL(i64, int64_t);
TYPED_REDUCEALL(i32, int32_t);
TYPED_REDUCEALL(i16, int16_t);
TYPED_REDUCEALL(i8, int8_t);
TYPED_REDUCEALL(i1, bool);
} // extern "C"
/// @brief reshape array
/// We assume array is partitioned along the first dimension (only) and
/// partitions are ordered by ranks
WaitHandleBase *_idtr_copy_reshape(SHARPY::DTypeId sharpytype,
SHARPY::Transceiver *tc, int64_t iNDims,
int64_t *iGShapePtr, int64_t *iOffsPtr,
void *iDataPtr, int64_t *iDataShapePtr,
int64_t *iDataStridesPtr, int64_t oNDims,
int64_t *oGShapePtr, int64_t *oOffsPtr,
void *oDataPtr, int64_t *oDataShapePtr,
int64_t *oDataStridesPtr) {
#ifdef NO_TRANSCEIVER
initMPIRuntime();
tc = SHARPY::getTransceiver();
#endif
if (!iGShapePtr || !iOffsPtr || !iDataPtr || !iDataShapePtr ||
!iDataStridesPtr || !oGShapePtr || !oOffsPtr || !oDataPtr ||
!oDataShapePtr || !oDataStridesPtr || !tc) {
throw std::invalid_argument("Fatal: received nullptr in reshape");
}
assert(std::accumulate(&iGShapePtr[0], &iGShapePtr[iNDims], 1,
std::multiplies<int64_t>()) ==
std::accumulate(&oGShapePtr[0], &oGShapePtr[oNDims], 1,
std::multiplies<int64_t>()));
assert(std::accumulate(&oOffsPtr[1], &oOffsPtr[oNDims], 0,
std::plus<int64_t>()) == 0);
auto N = tc->nranks();
auto me = tc->rank();
if (N <= me) {
throw std::out_of_range("Fatal: rank must be < number of ranks");
}
int64_t icSz = std::accumulate(&iGShapePtr[1], &iGShapePtr[iNDims], 1,
std::multiplies<int64_t>());
assert(icSz == std::accumulate(&iDataShapePtr[1], &iDataShapePtr[iNDims], 1,
std::multiplies<int64_t>()));
int64_t mySz = icSz * iDataShapePtr[0];
if (mySz / icSz != iDataShapePtr[0]) {
throw std::overflow_error("Fatal: Integer overflow in reshape");
}
int64_t myOff = iOffsPtr[0] * icSz;
if (myOff / icSz != iOffsPtr[0]) {
throw std::overflow_error("Fatal: Integer overflow in reshape");
}
int64_t myEnd = myOff + mySz;
if (myEnd < myOff) {
throw std::overflow_error("Fatal: Integer overflow in reshape");
}
int64_t oCSz = std::accumulate(&oGShapePtr[1], &oGShapePtr[oNDims], 1,
std::multiplies<int64_t>());
assert(oCSz == std::accumulate(&oDataShapePtr[1], &oDataShapePtr[oNDims], 1,
std::multiplies<int64_t>()));
int64_t myOSz = oCSz * oDataShapePtr[0];
if (myOSz / oCSz != oDataShapePtr[0]) {
throw std::overflow_error("Fatal: Integer overflow in reshape");
}
int64_t myOOff = oOffsPtr[0] * oCSz;
if (myOOff / oCSz != oOffsPtr[0]) {
throw std::overflow_error("Fatal: Integer overflow in reshape");
}
int64_t myOEnd = myOOff + myOSz;
if (myOEnd < myOOff) {
throw std::overflow_error("Fatal: Integer overflow in reshape");
}
// First we allgather the current and target partitioning
::std::vector<int64_t> buff(4 * N);
buff[me * 4 + 0] = myOff;
buff[me * 4 + 1] = mySz;
buff[me * 4 + 2] = myOOff;
buff[me * 4 + 3] = myOSz;
::std::vector<int> counts(N, 4);
::std::vector<int> dspl(N);
for (auto i = 0ul; i < N; ++i) {
dspl[i] = 4 * i;
}
tc->gather(buff.data(), counts.data(), dspl.data(), SHARPY::INT64,
SHARPY::REPLICATED);
// compute overlaps of current parts with requested parts
// and store meta for alltoall
std::vector<int> soffs(N, 0);
std::vector<int> sszs(N, 0);
std::vector<int> roffs(N, 0);
std::vector<int> rszs(N, 0);
std::vector<int64_t> lsOffs(N, 0);
std::vector<int64_t> lsEnds(N, 0);
int64_t totSSz = 0;
for (auto i = 0ul; i < N; ++i) {
int64_t *curr = &buff[i * 4];
auto xOff = curr[0];
auto xEnd = xOff + curr[1];
auto tOff = curr[2];
auto tEnd = tOff + curr[3];
// first check if this target part overlaps with my local part
if (tEnd > myOff && tOff < myEnd) {
auto sOff = std::max(tOff, myOff);
sszs[i] = std::min(tEnd, myEnd) - sOff;
soffs[i] = i ? soffs[i - 1] + sszs[i - 1] : 0;
lsOffs[i] = sOff - myOff;
lsEnds[i] = lsOffs[i] + sszs[i];
totSSz += sszs[i];
}
// then check if my target part overlaps with the remote local part
if (myOEnd > xOff && myOOff < xEnd) {
auto rOff = std::max(xOff, myOOff);
rszs[i] = std::min(xEnd, myOEnd) - rOff;
roffs[i] = i ? roffs[i - 1] + rszs[i - 1] : 0;
}
}
bool isStrided =
!SHARPY::is_contiguous(oDataShapePtr, oDataStridesPtr, oNDims);
void *rBuff =
isStrided ? new char[sizeof_dtype(sharpytype) * myOSz] : oDataPtr;
SHARPY::Buffer sendbuff(totSSz * sizeof_dtype(sharpytype), 2);
bufferizeN(iNDims, iDataPtr, iDataShapePtr, iDataStridesPtr, sharpytype, N,
lsOffs.data(), lsEnds.data(), sendbuff.data());
auto hdl = tc->alltoall(sendbuff.data(), sszs.data(), soffs.data(),
sharpytype, rBuff, rszs.data(), roffs.data());
auto wait = [tc, hdl, isStrided, rBuff, sharpytype, oDataShapePtr,
oDataStridesPtr, oNDims, oDataPtr,
sendbuff = std::move(sendbuff), sszs = std::move(sszs),
soffs = std::move(soffs), rszs = std::move(rszs),
roffs = std::move(roffs)]() {
tc->wait(hdl);
if (isStrided) {
unpack(rBuff, sharpytype, oDataShapePtr, oDataStridesPtr, oNDims,
oDataPtr);
delete[](char *) rBuff;
}
};
assert(sendbuff.empty() && sszs.empty() && soffs.empty() && rszs.empty() &&
roffs.empty());
if (no_async) {
wait();
return nullptr;
}
return mkWaitHandle(std::move(wait));
}
/// @brief reshape array
template <typename T>
WaitHandleBase *
_idtr_copy_reshape(SHARPY::Transceiver *tc, int64_t iNSzs, void *iGShapeDescr,
int64_t iNOffs, void *iLOffsDescr, int64_t iNDims,
void *iDataDescr, int64_t oNSzs, void *oGShapeDescr,
int64_t oNOffs, void *oLOffsDescr, int64_t oNDims,
void *oDataDescr) {
if (!iGShapeDescr || !iLOffsDescr || !iDataDescr || !oGShapeDescr ||
!oLOffsDescr || !oDataDescr) {
throw std::invalid_argument(
"Fatal error: received nullptr in update_halo.");
}
auto sharpytype = SHARPY::DTYPE<T>::value;
// Construct unranked memrefs for metadata and data
MRIdx1d iGShape(iNSzs, iGShapeDescr);
MRIdx1d iOffs(iNOffs, iLOffsDescr);
SHARPY::UnrankedMemRefType<T> iData(iNDims, iDataDescr);
MRIdx1d oGShape(oNSzs, oGShapeDescr);
MRIdx1d oOffs(oNOffs, oLOffsDescr);
SHARPY::UnrankedMemRefType<T> oData(oNDims, oDataDescr);
return _idtr_copy_reshape(
sharpytype, tc, iNDims, iGShape.data(), iOffs.data(), iData.data(),
iData.sizes(), iData.strides(), oNDims, oGShape.data(), oOffs.data(),
oData.data(), oData.sizes(), oData.strides());
}
namespace {
///
/// An util class of multi-dimensional index
///
class id {
public:
id(size_t dims) : _values(dims) {}
id(size_t dims, int64_t *value) : _values(value, value + dims) {}
id(const std::vector<int64_t> &values) : _values(values) {}
id(const std::vector<int64_t> &&values) : _values(std::move(values)) {}
/// Permute this id by axes and return a new id
id permute(std::vector<int64_t> axes) const {
std::vector<int64_t> new_values(_values.size());
for (size_t i = 0; i < _values.size(); i++) {
new_values[i] = _values[axes[i]];
}
return id(std::move(new_values));
}
int64_t operator[](size_t i) const { return _values[i]; }
int64_t &operator[](size_t i) { return _values[i]; }
/// Subtract another id from this id and return a new id
id operator-(const id &rhs) const {
std::vector<int64_t> new_values(_values.size());
for (size_t i = 0; i < _values.size(); i++) {
new_values[i] = _values[i] - rhs._values[i];
}
return id(std::move(new_values));
}
/// Subtract another id from this id and return a new id
id operator-(const int64_t *rhs) const {
std::vector<int64_t> new_values(_values.size());
for (size_t i = 0; i < _values.size(); i++) {
new_values[i] = _values[i] - rhs[i];
}
return id(std::move(new_values));
}
/// Increase the last dimension value of this id which bounds by shape
///
/// Example:
/// In shape (2,2) : (0,0)->(0,1)->(1,0)->(1,1)->(0,0)
void next(const int64_t *shape) {
size_t i = _values.size();
while (i--) {
++_values[i];
if (_values[i] < shape[i]) {
return;
}
_values[i] = 0;
}
}
size_t size() { return _values.size(); }
private:
std::vector<int64_t> _values;
};
///
/// An wrapper template class for distribute multi-dimensional array
///
template <typename T> class ndarray {
public:
ndarray(int64_t nDims, int64_t *gShape, int64_t *gOffsets, void *lData,
int64_t *lShape, int64_t *lStrides)
: _nDims(nDims), _gShape(gShape), _gOffsets(gOffsets), _lData((T *)lData),
_lShape(lShape), _lStrides(lStrides) {}
/// Return the first global index of local data
id firstLocalIndex() const { return id(_nDims, _gOffsets); }
/// Interate all global indices in local data
void localIndices(const std::function<void(const id &)> &callback) const {
size_t size = lSize();
id idx = firstLocalIndex();
while (size--) {
callback(idx);
idx.next(_gShape);
}
}
/// Interate all global indices of the array
void globalIndices(const std::function<void(const id &)> &callback) const {
size_t size = gSize();
id idx(_nDims);
while (size--) {
callback(idx);
idx.next(_gShape);
}
}
int64_t getLocalDataOffset(const id &idx) const {
auto localIdx = idx - _gOffsets;
int64_t offset = 0;
for (int64_t i = 0; i < _nDims - 1; ++i) {
offset = (offset + localIdx[i]) * _lShape[i + 1];
}
offset += localIdx[_nDims - 1];
return offset;
}
/// Using global index to access its data
T &operator[](const id &idx) { return _lData[getLocalDataOffset(idx)]; }
T operator[](const id &idx) const { return _lData[getLocalDataOffset(idx)]; }
id gShape() { return id(_nDims, _gShape); }
id lShape() { return id(_nDims, _lShape); }
size_t gSize() const {
return std::accumulate(_gShape, _gShape + _nDims, 1,
std::multiplies<int64_t>());
}
size_t lSize() const {
return std::accumulate(_lShape, _lShape + _nDims, 1,
std::multiplies<int64_t>());
}
private:
int64_t _nDims;
int64_t *_gShape;
int64_t *_gOffsets;
T *_lData;
int64_t *_lShape;
int64_t *_lStrides;
};
struct Parts {
int64_t iStart;
int64_t iEnd;
int64_t oStart;
int64_t oEnd;
};
size_t getInputRank(const std::vector<Parts> &parts, int64_t dim0) {
for (size_t i = 0; i < parts.size(); i++) {
if (dim0 >= parts[i].iStart && dim0 < parts[i].iEnd) {
return i;
}
}
assert(false && "unreachable");
return 0;
}
size_t getOutputRank(const std::vector<Parts> &parts, int64_t dim0) {
for (size_t i = 0; i < parts.size(); i++) {
if (dim0 >= parts[i].oStart && dim0 < parts[i].oEnd) {
return i;
}
}
assert(false && "unreachable");
return 0;
}
template <typename T> class WaitPermute {
public:
WaitPermute(SHARPY::Transceiver *tc, SHARPY::Transceiver::WaitHandle hdl,
SHARPY::rank_type cRank, SHARPY::rank_type nRanks,
std::vector<Parts> &&parts, std::vector<int64_t> &&axes,
std::vector<int64_t> oGShape, ndarray<T> &&input,
ndarray<T> &&output, std::vector<T> &&sendBuffer,
std::vector<int> &&sendOffsets, std::vector<int> &&sendSizes,
std::vector<T> &&receiveBuffer, std::vector<int> &&receiveOffsets,
std::vector<int> &&receiveSizes)
: tc(tc), hdl(hdl), cRank(cRank), nRanks(nRanks), parts(std::move(parts)),
axes(std::move(axes)), oGShape(std::move(oGShape)),
input(std::move(input)), output(std::move(output)),
sendBuffer(std::move(sendBuffer)), sendOffsets(std::move(sendOffsets)),
sendSizes(std::move(sendSizes)),
receiveBuffer(std::move(receiveBuffer)),
receiveOffsets(std::move(receiveOffsets)),
receiveSizes(std::move(receiveSizes)) {}
// Only allow move
WaitPermute(const WaitPermute &) = delete;
WaitPermute &operator=(const WaitPermute &) = delete;
WaitPermute(WaitPermute &&) = default;
WaitPermute &operator=(WaitPermute &&) = default;
void operator()() {
tc->wait(hdl);
std::vector<std::vector<T>> receiveRankBuffer(nRanks);
for (size_t rank = 0; rank < nRanks; ++rank) {
auto &rankBuffer = receiveRankBuffer[rank];
rankBuffer.insert(
rankBuffer.end(), receiveBuffer.begin() + receiveOffsets[rank],
receiveBuffer.begin() + receiveOffsets[rank] + receiveSizes[rank]);
}
// FIXME: very low efficiency, need to improve
std::vector<size_t> receiveRankBufferCount(nRanks, 0);
input.globalIndices([&](const id &inputIndex) {
id outputIndex = inputIndex.permute(axes);
auto rank = getOutputRank(parts, outputIndex[0]);
if (rank != cRank)
return;
rank = getInputRank(parts, inputIndex[0]);
auto &count = receiveRankBufferCount[rank];
output[outputIndex] = receiveRankBuffer[rank][count++];
});
}
private:
SHARPY::Transceiver *tc;
SHARPY::Transceiver::WaitHandle hdl;
SHARPY::rank_type cRank;
SHARPY::rank_type nRanks;
std::vector<Parts> parts;
std::vector<int64_t> axes;
std::vector<int64_t> oGShape;
ndarray<T> input;
ndarray<T> output;
std::vector<T> sendBuffer;
std::vector<int> sendOffsets;
std::vector<int> sendSizes;
std::vector<T> receiveBuffer;
std::vector<int> receiveOffsets;
std::vector<int> receiveSizes;
};
} // namespace
/// @brief permute array
/// We assume array is partitioned along the first dimension (only) and
/// partitions are ordered by ranks
template <typename T>
WaitHandleBase *_idtr_copy_permute(SHARPY::DTypeId sharpytype,
SHARPY::Transceiver *tc, int64_t iNDims,
int64_t *iGShapePtr, int64_t *iOffsPtr,
void *iDataPtr, int64_t *iDataShapePtr,
int64_t *iDataStridesPtr, int64_t *oOffsPtr,
void *oDataPtr, int64_t *oDataShapePtr,
int64_t *oDataStridesPtr, int64_t *axesPtr) {
#ifdef NO_TRANSCEIVER
initMPIRuntime();
tc = SHARPY::getTransceiver();
#endif
if (!iGShapePtr || !iOffsPtr || !iDataPtr || !iDataShapePtr ||
!iDataStridesPtr || !oOffsPtr || !oDataPtr || !oDataShapePtr ||
!oDataStridesPtr || !tc) {
throw std::invalid_argument("Fatal: received nullptr in reshape");
}
std::vector<int64_t> oGShape(iNDims);
for (int64_t i = 0; i < iNDims; ++i) {
oGShape[i] = iGShapePtr[axesPtr[i]];
}
auto *oGShapePtr = oGShape.data();
const auto oNDims = iNDims;
assert(std::accumulate(&iGShapePtr[0], &iGShapePtr[iNDims], 1,
std::multiplies<int64_t>()) ==
std::accumulate(&oGShapePtr[0], &oGShapePtr[oNDims], 1,
std::multiplies<int64_t>()));
assert(std::accumulate(&oOffsPtr[1], &oOffsPtr[oNDims], 0,
std::plus<int64_t>()) == 0);
const auto nRanks = tc->nranks();
const auto cRank = tc->rank();
if (nRanks <= cRank) {
throw std::out_of_range("Fatal: rank must be < number of ranks");
}
int64_t icSz = std::accumulate(&iGShapePtr[1], &iGShapePtr[iNDims], 1,
std::multiplies<int64_t>());
assert(icSz == std::accumulate(&iDataShapePtr[1], &iDataShapePtr[iNDims], 1,
std::multiplies<int64_t>()));
int64_t mySz = icSz * iDataShapePtr[0];
if (mySz / icSz != iDataShapePtr[0]) {
throw std::overflow_error("Fatal: Integer overflow in reshape");
}
int64_t myOff = iOffsPtr[0] * icSz;
if (myOff / icSz != iOffsPtr[0]) {
throw std::overflow_error("Fatal: Integer overflow in reshape");
}
int64_t myEnd = myOff + mySz;
if (myEnd < myOff) {
throw std::overflow_error("Fatal: Integer overflow in reshape");
}
int64_t oCSz = std::accumulate(&oGShapePtr[1], &oGShapePtr[oNDims], 1,
std::multiplies<int64_t>());
assert(oCSz == std::accumulate(&oDataShapePtr[1], &oDataShapePtr[oNDims], 1,
std::multiplies<int64_t>()));
int64_t myOSz = oCSz * oDataShapePtr[0];
if (myOSz / oCSz != oDataShapePtr[0]) {
throw std::overflow_error("Fatal: Integer overflow in reshape");
}
int64_t myOOff = oOffsPtr[0] * oCSz;
if (myOOff / oCSz != oOffsPtr[0]) {
throw std::overflow_error("Fatal: Integer overflow in reshape");
}
int64_t myOEnd = myOOff + myOSz;
if (myOEnd < myOOff) {
throw std::overflow_error("Fatal: Integer overflow in reshape");
}
// First we allgather the current and target partitioning
std::vector<Parts> parts(nRanks);
parts[cRank].iStart = iOffsPtr[0];
parts[cRank].iEnd = iOffsPtr[0] + iDataShapePtr[0];
parts[cRank].oStart = oOffsPtr[0];
parts[cRank].oEnd = oOffsPtr[0] + oDataShapePtr[0];
std::vector<int> counts(nRanks, 4);
std::vector<int> dspl(nRanks);
for (auto i = 0ul; i < nRanks; ++i) {
dspl[i] = 4 * i;
}
tc->gather(parts.data(), counts.data(), dspl.data(), SHARPY::INT64,
SHARPY::REPLICATED);
// Transpose
ndarray<T> input(iNDims, iGShapePtr, iOffsPtr, iDataPtr, iDataShapePtr,
iDataStridesPtr);
ndarray<T> output(oNDims, oGShapePtr, oOffsPtr, oDataPtr, oDataShapePtr,
oDataStridesPtr);
std::vector<int64_t> axes(axesPtr, axesPtr + iNDims);
std::vector<T> sendBuffer;
std::vector<T> receiveBuffer(output.lSize());
std::vector<int> sendSizes(nRanks);
std::vector<int> sendOffsets(nRanks);
std::vector<int> receiveSizes(nRanks);
std::vector<int> receiveOffsets(nRanks);
{
std::vector<std::vector<T>> sendRankBuffer(nRanks);
input.localIndices([&](const id &inputIndex) {
id outputIndex = inputIndex.permute(axes);
auto rank = getOutputRank(parts, outputIndex[0]);
sendRankBuffer[rank].push_back(input[inputIndex]);
});
int lastOffset = 0;
for (size_t rank = 0; rank < nRanks; rank++) {
sendSizes[rank] = sendRankBuffer[rank].size();
sendOffsets[rank] = lastOffset;
sendBuffer.insert(sendBuffer.end(), sendRankBuffer[rank].begin(),
sendRankBuffer[rank].end());
lastOffset += sendSizes[rank];
}
output.localIndices([&](const id &outputIndex) {
id inputIndex = outputIndex.permute(axes);
auto rank = getInputRank(parts, inputIndex[0]);
++receiveSizes[rank];
});
for (size_t rank = 1; rank < nRanks; rank++) {
receiveOffsets[rank] = receiveOffsets[rank - 1] + receiveSizes[rank - 1];
}
}
auto hdl = tc->alltoall(sendBuffer.data(), sendSizes.data(),
sendOffsets.data(), sharpytype, receiveBuffer.data(),
receiveSizes.data(), receiveOffsets.data());
auto wait =
WaitPermute(tc, hdl, cRank, nRanks, std::move(parts), std::move(axes),
std::move(oGShape), std::move(input), std::move(output),
std::move(sendBuffer), std::move(sendOffsets),
std::move(sendSizes), std::move(receiveBuffer),
std::move(receiveOffsets), std::move(receiveSizes));
assert(parts.empty() && axes.empty() && receiveBuffer.empty() &&
receiveOffsets.empty() && receiveSizes.empty());
if (no_async) {
wait();
return nullptr;
}
return mkWaitHandle(std::move(wait));
}
/// @brief permute array
template <typename T>
WaitHandleBase *
_idtr_copy_permute(SHARPY::Transceiver *tc, int64_t iNSzs, void *iGShapeDescr,
int64_t iNOffs, void *iLOffsDescr, int64_t iNDims,
void *iDataDescr, int64_t oNOffs, void *oLOffsDescr,
int64_t oNDims, void *oDataDescr, int64_t axesSzs,
void *axesDescr) {
if (!iGShapeDescr || !iLOffsDescr || !iDataDescr || !oLOffsDescr ||
!oDataDescr || !axesDescr) {
throw std::invalid_argument(
"Fatal error: received nullptr in update_halo.");
}
auto sharpyType = SHARPY::DTYPE<T>::value;
// Construct unranked memrefs for metadata and data
MRIdx1d iGShape(iNSzs, iGShapeDescr);
MRIdx1d iOffs(iNOffs, iLOffsDescr);
SHARPY::UnrankedMemRefType<T> iData(iNDims, iDataDescr);
MRIdx1d oOffs(oNOffs, oLOffsDescr);
SHARPY::UnrankedMemRefType<T> oData(oNDims, oDataDescr);
MRIdx1d axes(axesSzs, axesDescr);
return _idtr_copy_permute<T>(sharpyType, tc, iNDims, iGShape.data(),
iOffs.data(), iData.data(), iData.sizes(),
iData.strides(), oOffs.data(), oData.data(),
oData.sizes(), oData.strides(), axes.data());
}
extern "C" {
#define TYPED_COPY_RESHAPE(_sfx, _typ) \
void *_idtr_copy_reshape_##_sfx( \
SHARPY::Transceiver *tc, int64_t iNSzs, void *iGShapeDescr, \
int64_t iNOffs, void *iLOffsDescr, int64_t iNDims, void *iLDescr, \
int64_t oNSzs, void *oGShapeDescr, int64_t oNOffs, void *oLOffsDescr, \
int64_t oNDims, void *oLDescr) { \
return _idtr_copy_reshape<_typ>( \
tc, iNSzs, iGShapeDescr, iNOffs, iLOffsDescr, iNDims, iLDescr, oNSzs, \
oGShapeDescr, oNOffs, oLOffsDescr, oNDims, oLDescr); \
} \
_Pragma(STRINGIFY(weak _mlir_ciface__idtr_copy_reshape_##_sfx = \
_idtr_copy_reshape_##_sfx))
TYPED_COPY_RESHAPE(f64, double);