-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathdemo.py
231 lines (200 loc) · 7.56 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
# -*- coding: utf-8 -*-
import numpy as np
from models import Dignet
import torch
import os
import random
import pybullet as p
import sim_class
from PIL import Image
import tool
import test_network_sim
from tqdm import tqdm
np.random.seed(0)
random.seed(0)
img_save_dir = './test_data/train/input/'
state_save_dir = img_save_dir.replace("input", "state")
random_para_save_dir = img_save_dir.replace("input", "random_para")
seg_map_dir = img_save_dir.replace("input", "seg_save")
sec_input_dir = img_save_dir.replace("input", "sec_input")
tool.create_dir_not_exist(img_save_dir)
tool.create_dir_not_exist(state_save_dir)
tool.create_dir_not_exist(random_para_save_dir)
tool.create_dir_not_exist(seg_map_dir)
tool.create_dir_not_exist(sec_input_dir)
#%%
image_pixel_before = 320
image_pixel_after = 240
def first_genrate_depth_image(floder_id):
np.random.seed(floder_id)
lateralFriction_random = 0.3
globalScaling_random = 1
object_type = random.randint(0,1)
object_type = 0
if object_type == 0:
object_path = './objurdf/duomi/duomi.urdf'
mass_random = 0.02
num_obj = 130
elif object_type == 1:
object_path = './objurdf/gosize/cy.urdf'
num_obj = 140
mass_random = 0.02
elif object_type == 2:
object_path = './objurdf/key/sj.urdf'
num_obj = 90+random.randint(-10,10)
#%%
GUI = True
yaw_times = 6
aps = 4
pitch_times = 3
roll_times = 3
fl_times = 4
EyePosition=[0,0,0.46]
# EyePosition=[0,0,0.46]
TargetPosition=[0,0,0]
fov_d = 69.25
near = 0.001
far = EyePosition[2]+0.05
state_save_path = state_save_dir+str(floder_id)+'.bullet'
robotStartOrn = p.getQuaternionFromEuler([0, 0, 0])
#%%
random_para=[]
random_para.append(GUI)
random_para.append(num_obj)
random_para.append(yaw_times)
random_para.append(EyePosition)
random_para.append(TargetPosition)
random_para.append(fov_d)
random_para.append(near)
random_para.append(far)
random_para.append(state_save_path)
random_para.append(object_path)
random_para.append(aps)
random_para.append(pitch_times)
random_para.append(roll_times)
random_para.append(fl_times)
#%%
rot_step_size = 360 / yaw_times
y_ws = np.array([rot_step_size * i for i in range(yaw_times)]).tolist()
# 0: 0.02 1:0.03 2:0.04
ap_ws = [0, 1, 2, 3]
p_ws = [0,10,20]
r_ws = [0,-10,10]
fl_ws = [0,1,2,3]
selected_yaw = random.sample(y_ws, 3)
selected_pitch = random.sample(p_ws, 1)
selected_roll= random.sample(r_ws, 1)
selected_ap= random.sample(ap_ws, 2)
selected_fl = random.sample(fl_ws, 2)
random_para.append(selected_yaw)
random_para.append(selected_pitch)
random_para.append(selected_roll)
random_para.append(selected_ap)
random_para.append(selected_fl)
random_para.append(mass_random)
random_para.append(lateralFriction_random)
random_para.append(globalScaling_random)
random_para.append(object_type)
random_para = np.array(random_para,dtype=object)
np.save(random_para_save_dir+str(floder_id)+'.npy',random_para)
#%%
#_init_ sim_env
sim = sim_class.Sim(state_save_path, num_obj, GUI, image_pixel_before,
EyePosition,TargetPosition,fov_d,far,near,
robotStartOrn,object_path,mass_random,
lateralFriction_random,globalScaling_random)
curr_r = p.startStateLogging(p.STATE_LOGGING_VIDEO_MP4,"video_logs/fir_task_vid_" + str(floder_id) + ".mp4")
#build env_sim
sim.build_e()
#
rgbImg, depthImg, segImg = sim.render()
img_d, float_depth, poke_pos_map = sim.after_render()
img_d[np.where(segImg==0)] = 255
p.stopStateLogging(curr_r)
p.disconnect()
return img_d, segImg
# if not os.path.exists("video_logs/"):
# os.makedirs("video_logs")
def poke_in_sim(row, col, yt, pt, rt, ap_ind, fl_ind,floder_id):
random_para = np.load(random_para_save_dir+str(floder_id)+'.npy',allow_pickle=True)
GUI = random_para[0]
num_obj = random_para[1]
# yaw_times = random_para[2]
EyePosition=random_para[3]
TargetPosition=random_para[4]
fov_d = random_para[5]
near = random_para[6]
far = random_para[7]
state_save_path = random_para[8]
object_path = random_para[9]
mass_random = random_para[19]
lateralFriction_random = random_para[20]
globalScaling_random = random_para[21]
robotStartOrn = p.getQuaternionFromEuler([0, 0, 0])
#_init_ class
sim = sim_class.Sim(state_save_path, num_obj, GUI, image_pixel_before,
EyePosition,TargetPosition,fov_d,far,near,
robotStartOrn,object_path,mass_random,
lateralFriction_random,globalScaling_random)
sim.restore_env()
#image render
rgbImg, depthImg, segImg = sim.render()
img_d, float_depth, poke_pos_map = sim.after_render()
img_d[np.where(segImg==0)] = 255
######################################################################
#%%
dig_depth = 0.03
sim.reset()
curr_r = p.startStateLogging(p.STATE_LOGGING_VIDEO_MP4,"video_logs/sec_task_vid_" + str(floder_id) + ".mp4")
"停在上方的位置"
surface_pos_x = poke_pos_map[row, col][0]
surface_pos_y = poke_pos_map[row, col][1]
surface_pos_z = poke_pos_map[row, col][2]
robot_start_pos = [surface_pos_x,surface_pos_y,surface_pos_z+0.01]
"remember r_yaw is negtive"
r_yaw = -int(yt)
r_pitch = int(pt)
r_roll = int(rt)
robot_orn = tool.world_to_gripper_orn(r_pitch, r_roll, r_yaw)
target_pos_orn = p.multiplyTransforms(robot_start_pos, robot_orn, [0,0,-dig_depth], [0,0,0,1])
"finger_length at row i col i"
finger_length = str(int(fl_ind))
"set urdf with finger_length"
robot_path = './gripper_urdf/'+str(int(ap_ind))+finger_length+'.urdf'
label_at_pixel = sim.reset_and_poke(robot_start_pos,target_pos_orn,robot_orn,robot_path)
p.stopStateLogging(curr_r)
p.disconnect()
return label_at_pixel
#%%
loop_id==7
file_id = '1VJ1uCrph1Xw9_FkU8G0pB86r14VUBcRV'
model_path = './round7.ckpt'
tool.download_file_from_google_drive(file_id, model_path)
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print('test network device', device)
model = Dignet(num_input_channels=3)
state_dict = {k.replace('auto_encoder.', ''): v for k, v in torch.load(model_path,map_location=device)['state_dict'].items()}
model.load_state_dict(state_dict)
model.to(device)
model.eval()
#%%
success = 0
fail = 0
id_ind = 0
#depth_image, seg_image = first_genrate_depth_image(floder_id=id_ind)
#tmp_img_d = depth_image.copy()
#tmp_img_d = tmp_img_d.astype(np.uint8)
#tmp_img_d = Image.fromarray(tmp_img_d)
#tmp_img_d.save('record_depth.png')
#%%
depth_image = np.array(Image.open('record_depth.png'))
pixel_row,pixel_col, yaw, pitch, roll, aperture, fl = test_network_sim.test_batch(model,depth_image,seg_image=0)
label = poke_in_sim(pixel_row,pixel_col, yaw, pitch, roll, aperture, fl,id_ind)
#id_ind = 0
#depth_image = np.array(Image.open('record_depth.png'))
#pixel_row,pixel_col, yaw, pitch, roll, aperture, fl = test_network_sim.test_batch(model,depth_image,seg_image=0)
#pixel_row = 100
#pixel_col = 100
#yaw = 240
#label = poke_in_sim(pixel_row,pixel_col, yaw, pitch, roll, aperture, fl,id_ind)