-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSteadyStateFunction.m
155 lines (110 loc) · 6.06 KB
/
SteadyStateFunction.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
function vect_d_q=SteadyStateFunction(vect_t,initial_cond)
% We have two sets of differential equaiotns.
% the first set is the differential equations relating to the system
% dynamic as: [M]*dd_q=[CG];
%[M] is the matrix of inertia
%[CG] is the vector of sum of the coriolis and gravity vector
% the second set is related to the velocity constriants as:
%[a]*d_q=-[b]
%[a] is the coefficient of the first order derivative of the generelized
%coordinat
load('robot');
load('sim_par')
%------------------------------------------------------------
% %kinematic with fixed apex point
if sim_num==1
vect_q=initial_cond;
vect_d_q=zeros(length(initial_cond),1);
% for the current general coordinates the [a] and its time derivative
% are obtained by callig the Matlab function fun_Mat_a_const
[Mat_a_const,Mat_d_a_const]=fun_Mat_a_const(vect_q(1:6,1),vect_q(7:12,1));
depend_vel_var=-inv(Mat_a_const(1:5,1:5))*Mat_a_const(1:5,6)*Init_d_phi;
vect_d_q(1:5)=depend_vel_var(1:5);
vect_d_q(6)=Init_d_phi;
%-----------------------------------------------------------------
%kinematic with non-fixed apex point
elseif sim_num==2
%defining the trajectories of the euler angles depnting to time
omega_psi=2*pi/period_psi;
omega_theta=2*pi/period_theta;
omega_phi=2*pi/period_phi;
coeff_t_phi=max_amplitude_phi/(5*period_phi);
if vect_t<0*period_phi
Dphi=(coeff_t_phi*vect_t)*omega_phi*cos(omega_phi*vect_t+diff_phase_phi);
else
Dphi=max_amplitude_phi*omega_phi*cos(omega_phi*vect_t+diff_phase_phi);
end
Dpsi=amplitut_psi*omega_psi*cos(omega_psi*vect_t+diff_phase_psi);
Dtheta= amplitut_theta*omega_theta*cos(omega_theta*vect_t+diff_phase_theta);
vect_q=initial_cond;
vect_d_q=zeros(length(initial_cond),1);
% for the current general coordinates the [a] and its time derivative
% are obtained by callig the Matlab function fun_Mat_a_const
% here we only consider the first three constraints and those relating
% to the fixed apex point is not considered here.
[Mat_a_const,Mat_d_a_const]=fun_Mat_a_const(vect_q(1:6,1),vect_q(7:12,1));
depend_vel_var=-inv(Mat_a_const(1:3,1:3))*Mat_a_const(1:3,4:6)*[Dpsi;Dtheta;Dphi];
vect_d_q(1:3)=depend_vel_var(1:3);
vect_d_q(4:6)=[Dpsi;Dtheta;Dphi];
%-----------------------------------------------------------------
%dynamic with fixed apex point
elseif sim_num==3
vect_q=initial_cond;
vect_d_q=zeros(length(initial_cond),1);
val_alpha=20;
% for the current general coordinates the [M] and [CG]
% are obtained by callig the Matlab function dynamiceqpar
[Mat_M,Vect_CG]=dynamiceqpar(vect_q(1:6,1),vect_q(7:12,1));Vect_CG=-Vect_CG;
% for the current general coordinates the [a] and its time derivative
% are obtained by callig the Matlab function fun_Mat_a_const
[Mat_a_const,Mat_d_a_const]=fun_Mat_a_const(vect_q(1:6,1),vect_q(7:12,1));
vect_epsil=Mat_a_const(1:5,:)*vect_q(7:12,1);
d_Ad_q=Mat_d_a_const(1:5,:)*vect_q(7:12,1);
d_Ad_q=d_Ad_q+2*val_alpha*vect_epsil;
%The augmented matrix to define the simultaneous system of differential
%equations of dydnamic of the object and the constraint is generated
%here. refer to numerical method for solving the system constraint
%dynamic equations in ginsberg's book
Mat_M_A=[Mat_M,-Mat_a_const(1:5,:)';-Mat_a_const(1:5,:),zeros(5,5)];
vect_dd_q_lambda=inv(Mat_M_A)*[Vect_CG;d_Ad_q];
vect_d_q(1:6,1)=vect_q(7:12,1);
vect_d_q(7:12,1)=vect_dd_q_lambda(1:6,1);
%-----------------------------------------------------------------
%dynamic with Euler-Angles-Velocity-constrained
elseif sim_num==4
%defining the trajectories of the euler angles depnting to time
omega_psi=2*pi/period_psi;
omega_theta=2*pi/period_theta;
% d_psi=-amplitut_psi*omega_psi*sin(omega_psi*vect_t)+(amplitut_psi/3)*omega_psi*sin(3*omega_psi*vect_t);
% d_theta=0;%-amplitut_theta*omega_theta*sin(omega_theta*vect_t)+(amplitut_theta/3)*omega_theta*sin(3*omega_theta*vect_t);
% dd_psi=-amplitut_psi*omega_psi^2*cos(omega_psi*vect_t)+amplitut_psi*omega_psi^2*cos(3*omega_psi*vect_t);
% dd_theta=0;%-amplitut_theta*omega_theta^2*cos(omega_theta*vect_t)+amplitut_theta*omega_theta^2*cos(3*omega_theta*vect_t);
d_psi=amplitut_psi*omega_psi*cos(omega_psi*vect_t+diff_phase_psi);
d_theta=amplitut_theta*omega_theta*cos(omega_theta*vect_t+diff_phase_theta);
dd_psi=-amplitut_psi*omega_psi^2*sin(omega_psi*vect_t+diff_phase_psi);
dd_theta=-amplitut_theta*omega_theta^2*sin(omega_theta*vect_t+diff_phase_theta);
vect_q=initial_cond;
vect_d_q=zeros(length(initial_cond),1);
val_alpha=20;
% for the current general coordinates the [M] and [CG]
% are obtained by callig the Matlab function dynamiceqpar
[Mat_M,Vect_CG]=dynamiceqpar(vect_q(1:6,1),vect_q(7:12,1));Vect_CG=-Vect_CG;
% for the current general coordinates the [a] and its time derivative
% are obtained by callig the Matlab function fun_Mat_a_const
[Mat_a_const,Mat_d_a_const]=fun_Mat_a_const(vect_q(1:6,1),vect_q(7:12,1));
Mat_a_const(6,:)=[];Mat_d_a_const(6,:)=[];
Mat_a_const(4:5,:)=[0,0,0,1,0,0;0,0,0,0,1,0];Mat_d_a_const(4:5,:)=zeros(2,6);
Mat_b_const=-[0;0;0;d_psi;d_theta];Mat_d_b_const=-[0;0;0;dd_psi;dd_theta];
Mat_Q=fun_Mat_Q_Force(vect_q(1:6,1));
% vect_epsil=Mat_a_const(1:5,:)*vect_q(7:12,1)+Mat_b_const;
d_Ad_qPd_b=Mat_d_a_const(1:5,:)*vect_q(7:12,1)+Mat_d_b_const;
% d_Ad_qPd_b=d_Ad_qPd_b+2*val_alpha*vect_epsil;
%The augmented matrix to define the simultaneous system of differential
%equations of dydnamic of the object and the constraint is generated
%here. refer to numerical method for solving the system constraint
%dynamic equations in ginsberg's book
Mat_M_A=[Mat_M,-Mat_a_const(1:5,:)';-Mat_a_const(1:5,:),zeros(5,5)];
vect_dd_q_lambda=inv(Mat_M_A)*[Vect_CG;d_Ad_qPd_b];
vect_d_q(1:6,1)=vect_q(7:12,1);
vect_d_q(7:12,1)=vect_dd_q_lambda(1:6,1);
end