forked from pytorch/executorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmethod_meta_test.cpp
165 lines (135 loc) · 5.26 KB
/
method_meta_test.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under the BSD-style license found in the
* LICENSE file in the root directory of this source tree.
*/
#include <executorch/runtime/executor/method_meta.h>
#include <cstdlib>
#include <filesystem>
#include <executorch/extension/data_loader/file_data_loader.h>
#include <executorch/runtime/core/exec_aten/exec_aten.h>
#include <executorch/runtime/executor/program.h>
#include <gtest/gtest.h>
using namespace ::testing;
using executorch::runtime::Error;
using executorch::runtime::MethodMeta;
using executorch::runtime::Program;
using executorch::runtime::Result;
using executorch::runtime::TensorInfo;
using torch::executor::util::FileDataLoader;
class MethodMetaTest : public ::testing::Test {
protected:
void load_program(const char* path, const char* module_name) {
// Create a loader for the serialized program.
Result<FileDataLoader> loader = FileDataLoader::from(path);
ASSERT_EQ(loader.error(), Error::Ok);
loaders_.insert(
{module_name,
std::make_unique<FileDataLoader>(std::move(loader.get()))});
// Use it to load the program.
Result<Program> program = Program::load(
loaders_[module_name].get(),
Program::Verification::InternalConsistency);
ASSERT_EQ(program.error(), Error::Ok);
programs_.insert(
{module_name, std::make_unique<Program>(std::move(program.get()))});
}
void SetUp() override {
load_program(std::getenv("ET_MODULE_ADD_PATH"), "add");
load_program(std::getenv("ET_MODULE_STATEFUL_PATH"), "stateful");
}
private:
// Must outlive program_, but tests shouldn't need to touch it.
std::unordered_map<std::string, std::unique_ptr<FileDataLoader>> loaders_;
protected:
std::unordered_map<std::string, std::unique_ptr<Program>> programs_;
};
namespace {
// Check TensorInfo against hard coded values from AddModule.
void check_tensor(const TensorInfo& tensor_info) {
auto sizes = tensor_info.sizes();
auto dim_order = tensor_info.dim_order();
EXPECT_EQ(sizes.size(), 2);
EXPECT_EQ(sizes[0], 2);
EXPECT_EQ(sizes[1], 2);
EXPECT_EQ(tensor_info.scalar_type(), executorch::aten::ScalarType::Float);
EXPECT_EQ(dim_order.size(), 2);
EXPECT_EQ(dim_order[0], 0);
EXPECT_EQ(dim_order[1], 1);
EXPECT_EQ(tensor_info.is_memory_planned(), true);
EXPECT_EQ(tensor_info.nbytes(), 16);
}
} // namespace
TEST_F(MethodMetaTest, MethodMetaApi) {
Result<MethodMeta> method_meta = programs_["add"]->method_meta("forward");
ASSERT_EQ(method_meta.error(), Error::Ok);
// Appropriate amount of inputs
EXPECT_EQ(method_meta->num_inputs(), 3);
// Appropriate amount of outputs
EXPECT_EQ(method_meta->num_outputs(), 1);
// Appropriate amount of planned buffers
EXPECT_EQ(method_meta->num_memory_planned_buffers(), 1);
EXPECT_EQ(method_meta->num_non_const_buffers(), 1); // Deprecated API
// Appropriate size of planned buffer
EXPECT_EQ(method_meta->memory_planned_buffer_size(0).get(), 48);
EXPECT_EQ(method_meta->non_const_buffer_size(0).get(), 48); // Deprecated API
// Invalid index Errors
EXPECT_EQ(
method_meta->memory_planned_buffer_size(1).error(),
Error::InvalidArgument);
EXPECT_EQ(
method_meta->non_const_buffer_size(1).error(),
Error::InvalidArgument); // Deprecated API
// Number instructions in method is nonzero
EXPECT_NE(method_meta->num_instructions(), 0);
// Missing method fails
EXPECT_EQ(
programs_["add"]->method_meta("not_a_method").error(),
Error::InvalidArgument);
}
TEST_F(MethodMetaTest, TensorInfoApi) {
Result<MethodMeta> method_meta = programs_["add"]->method_meta("forward");
ASSERT_EQ(method_meta.error(), Error::Ok);
// Input 1
Result<TensorInfo> in_1 = method_meta->input_tensor_meta(0);
ASSERT_TRUE(in_1.ok());
check_tensor(in_1.get());
// Input 2
Result<TensorInfo> in_2 = method_meta->input_tensor_meta(1);
ASSERT_TRUE(in_2.ok());
check_tensor(in_2.get());
// Output 1
Result<TensorInfo> out_1 = method_meta->output_tensor_meta(0);
ASSERT_TRUE(out_1.ok());
check_tensor(out_1.get());
// Copyable
Result<TensorInfo> info = method_meta->input_tensor_meta(0);
TensorInfo info_copy_ctor(info.get());
TensorInfo info_copy_assign(out_1.get());
info_copy_assign = info.get();
check_tensor(info_copy_ctor);
check_tensor(info_copy_assign);
// Move-able
TensorInfo info_move_ctor(std::move(info.get()));
check_tensor(info_move_ctor);
// Errors
EXPECT_EQ(method_meta->input_tensor_meta(3).error(), Error::InvalidArgument);
EXPECT_EQ(method_meta->input_tensor_meta(-1).error(), Error::InvalidArgument);
EXPECT_EQ(method_meta->output_tensor_meta(3).error(), Error::InvalidArgument);
EXPECT_EQ(
method_meta->output_tensor_meta(-1).error(), Error::InvalidArgument);
}
TEST_F(MethodMetaTest, MethodMetaAttribute) {
Result<MethodMeta> method_meta =
programs_["stateful"]->method_meta("forward");
ASSERT_EQ(method_meta.error(), Error::Ok);
ASSERT_EQ(method_meta->num_attributes(), 1);
auto state = method_meta->attribute_tensor_meta(0);
ASSERT_TRUE(state.ok());
ASSERT_EQ(state->name(), "state");
ASSERT_FALSE(state->is_memory_planned());
auto bad_access = method_meta->attribute_tensor_meta(1);
ASSERT_EQ(bad_access.error(), Error::InvalidArgument);
}