forked from pytorch/executorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmethod_test.cpp
392 lines (322 loc) · 13.2 KB
/
method_test.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under the BSD-style license found in the
* LICENSE file in the root directory of this source tree.
*/
#include <cstdlib>
#include <filesystem>
#include <executorch/extension/data_loader/file_data_loader.h>
#include <executorch/extension/flat_tensor/flat_tensor_data_map.h>
#include <executorch/extension/runner_util/inputs.h>
#include <executorch/runtime/core/exec_aten/exec_aten.h>
#include <executorch/runtime/executor/method.h>
#include <executorch/runtime/executor/program.h>
#include <executorch/runtime/executor/test/managed_memory_manager.h>
#include <executorch/runtime/platform/runtime.h>
#include <executorch/test/utils/DeathTest.h>
#include <gtest/gtest.h>
using namespace ::testing;
using executorch::aten::ArrayRef;
using executorch::extension::FlatTensorDataMap;
using executorch::extension::prepare_input_tensors;
using executorch::runtime::Error;
using executorch::runtime::EValue;
using executorch::runtime::Method;
using executorch::runtime::Program;
using executorch::runtime::Result;
using executorch::runtime::testing::ManagedMemoryManager;
using torch::executor::util::FileDataLoader;
constexpr size_t kDefaultNonConstMemBytes = 32 * 1024U;
constexpr size_t kDefaultRuntimeMemBytes = 32 * 1024U;
class MethodTest : public ::testing::Test {
protected:
void load_program(const char* path, const char* module_name) {
// Create a loader for the serialized program.
Result<FileDataLoader> loader = FileDataLoader::from(path);
ASSERT_EQ(loader.error(), Error::Ok);
loaders_.insert(
{module_name,
std::make_unique<FileDataLoader>(std::move(loader.get()))});
// Use it to load the program.
Result<Program> program = Program::load(
loaders_[module_name].get(),
Program::Verification::InternalConsistency);
ASSERT_EQ(program.error(), Error::Ok);
programs_.insert(
{module_name, std::make_unique<Program>(std::move(program.get()))});
}
void load_data_map(const char* path, const char* module_name) {
// Create a loader for the serialized data map.
Result<FileDataLoader> loader = FileDataLoader::from(path);
ASSERT_EQ(loader.error(), Error::Ok);
loaders_.insert(
{module_name,
std::make_unique<FileDataLoader>(std::move(loader.get()))});
Result<FlatTensorDataMap> data_map =
FlatTensorDataMap::load(loaders_[module_name].get());
EXPECT_EQ(data_map.error(), Error::Ok);
data_maps_.insert(
{module_name,
std::make_unique<FlatTensorDataMap>(std::move(data_map.get()))});
}
void SetUp() override {
executorch::runtime::runtime_init();
load_program(std::getenv("ET_MODULE_ADD_PATH"), "add");
load_program(std::getenv("ET_MODULE_INDEX_PATH"), "index");
load_program(
std::getenv("ET_MODULE_DYNAMIC_CAT_UNALLOCATED_IO_PATH"), "cat");
load_program(std::getenv("ET_MODULE_LINEAR_PATH"), "linear");
load_program(std::getenv("ET_MODULE_STATEFUL_PATH"), "stateful");
load_program(
std::getenv("DEPRECATED_ET_MODULE_LINEAR_CONSTANT_BUFFER_PATH"),
"linear_constant_buffer");
load_program(
std::getenv("ET_MODULE_LINEAR_PROGRAM_PATH"), "linear_program");
load_data_map(std::getenv("ET_MODULE_LINEAR_DATA_PATH"), "linear_data");
}
private:
// Must outlive program_, but tests shouldn't need to touch it.
std::unordered_map<std::string, std::unique_ptr<FileDataLoader>> loaders_;
protected:
std::unordered_map<std::string, std::unique_ptr<Program>> programs_;
std::unordered_map<std::string, std::unique_ptr<FlatTensorDataMap>>
data_maps_;
};
TEST_F(MethodTest, MoveTest) {
ManagedMemoryManager mmm(kDefaultNonConstMemBytes, kDefaultRuntimeMemBytes);
Result<Method> method = programs_["add"]->load_method("forward", &mmm.get());
ASSERT_EQ(method.error(), Error::Ok);
// Can execute the method.
auto input_cleanup = prepare_input_tensors(*method);
ASSERT_EQ(input_cleanup.error(), Error::Ok);
Error err = method->execute();
ASSERT_EQ(err, Error::Ok);
// Move into a new Method.
Method new_method(std::move(method.get()));
// Can't execute the old method.
err = method->execute();
ASSERT_NE(err, Error::Ok);
// Can execute the new method.
err = new_method.execute();
ASSERT_EQ(err, Error::Ok);
}
TEST_F(MethodTest, GetInputTests) {
ManagedMemoryManager mmm(kDefaultNonConstMemBytes, kDefaultRuntimeMemBytes);
Result<Method> method = programs_["add"]->load_method("forward", &mmm.get());
ASSERT_EQ(method.error(), Error::Ok);
size_t num_inputs = method->inputs_size();
ASSERT_GT(num_inputs, 0);
// In-range inputs should succeed without aborting.
method->get_input(0);
method->get_input(num_inputs - 1);
// Out-of-range inputs should abort.
ET_EXPECT_DEATH(method->get_input(num_inputs), "");
ET_EXPECT_DEATH(method->get_input(num_inputs + 1), "");
}
TEST_F(MethodTest, MutableInputTests) {
ManagedMemoryManager mmm(kDefaultNonConstMemBytes, kDefaultRuntimeMemBytes);
Result<Method> method = programs_["add"]->load_method("forward", &mmm.get());
ASSERT_EQ(method.error(), Error::Ok);
size_t num_inputs = method->inputs_size();
ASSERT_GT(num_inputs, 0);
// In-range inputs should succeed without aborting.
method->mutable_input(0);
method->mutable_input(num_inputs - 1);
// Out-of-range inputs should abort.
ET_EXPECT_DEATH(method->mutable_input(num_inputs), "");
ET_EXPECT_DEATH(method->mutable_input(num_inputs + 1), "");
}
TEST_F(MethodTest, GetOutputTests) {
ManagedMemoryManager mmm(kDefaultNonConstMemBytes, kDefaultRuntimeMemBytes);
Result<Method> method = programs_["add"]->load_method("forward", &mmm.get());
ASSERT_EQ(method.error(), Error::Ok);
size_t num_outputs = method->outputs_size();
ASSERT_GT(num_outputs, 0);
// In-range outputs should succeed without aborting.
method->get_output(0);
method->get_output(num_outputs - 1);
// Out-of-range outputs should abort.
ET_EXPECT_DEATH(method->get_output(num_outputs), "");
ET_EXPECT_DEATH(method->get_output(num_outputs + 1), "");
}
TEST_F(MethodTest, MutableOutputTests) {
ManagedMemoryManager mmm(kDefaultNonConstMemBytes, kDefaultRuntimeMemBytes);
Result<Method> method = programs_["add"]->load_method("forward", &mmm.get());
ASSERT_EQ(method.error(), Error::Ok);
size_t num_outputs = method->outputs_size();
ASSERT_GT(num_outputs, 0);
// In-range outputs should succeed without aborting.
method->mutable_output(0);
method->mutable_output(num_outputs - 1);
// Out-of-range outputs should abort.
ET_EXPECT_DEATH(method->mutable_output(num_outputs), "");
ET_EXPECT_DEATH(method->mutable_output(num_outputs + 1), "");
}
TEST_F(MethodTest, SetPrimInputTest) {
ManagedMemoryManager mmm(kDefaultNonConstMemBytes, kDefaultRuntimeMemBytes);
Result<Method> method = programs_["add"]->load_method("forward", &mmm.get());
ASSERT_EQ(method.error(), Error::Ok);
// Can execute the method.
auto input_cleanup = prepare_input_tensors(*method);
ASSERT_EQ(input_cleanup.error(), Error::Ok);
// The args to the method are x, y, alpha. x and y are tensors handled above
// alpha is a prim.
// Traced prim input was '1.0' so 3.0 should error.
auto input_err = method->set_input(EValue(3.0), 2);
EXPECT_EQ(input_err, Error::InvalidArgument);
// Traced prim input was '1.0' so '1.0' should be ok.
input_err = method->set_input(EValue(1.0), 2);
ASSERT_EQ(input_err, Error::Ok);
Error err = method->execute();
EXPECT_EQ(err, Error::Ok);
}
TEST_F(MethodTest, MethodMetaTest) {
ManagedMemoryManager mmm(kDefaultNonConstMemBytes, kDefaultRuntimeMemBytes);
Result<Method> method = programs_["add"]->load_method("forward", &mmm.get());
ASSERT_EQ(method.error(), Error::Ok);
auto method_meta = method->method_meta();
EXPECT_EQ(method_meta.num_inputs(), method->inputs_size());
EXPECT_EQ(method_meta.num_outputs(), method->outputs_size());
}
TEST_F(MethodTest, AliasedIOTest) {
// TODO(T163238401)
ManagedMemoryManager mmm(kDefaultNonConstMemBytes, kDefaultRuntimeMemBytes);
Result<Method> method = programs_["cat"]->load_method("forward", &mmm.get());
ASSERT_EQ(method.error(), Error::Ok);
// Set up io. Input and Output should share the same memory.
constexpr int buffer_size = 16;
float buffer[buffer_size]; // Initial input is (2,4) we then cat a (1,4) to it
// twice for a final shape of (4,4)
for (int i = 0; i < buffer_size; ++i) {
buffer[i] = 0.f;
}
int32_t sizes[2] = {2, 4};
uint8_t dim_order[2] = {0, 1};
int32_t strides[2] = {4, 1};
executorch::aten::TensorImpl impl(
executorch::aten::ScalarType::Float,
2,
sizes,
buffer,
dim_order,
strides);
auto input_err =
method->set_input(EValue(executorch::aten::Tensor(&impl)), 0);
ASSERT_EQ(input_err, Error::Ok);
auto output_err = method->set_output_data_ptr(buffer, sizeof(buffer), 0);
ASSERT_EQ(output_err, Error::Ok);
ASSERT_EQ(method->get_output(0).toTensor().const_data_ptr(), buffer);
// Execute the method once. Cat a 1x4 to a 2x4.
auto execute_error = method->execute();
ASSERT_EQ(execute_error, Error::Ok);
auto output = method->get_output(0);
ASSERT_TRUE(output.isTensor());
EXPECT_EQ(output.toTensor().sizes()[0], 3);
EXPECT_EQ(output.toTensor().sizes()[1], 4);
// Original input should be 0.
for (size_t i = 0; i < 2 * 4; i++) {
EXPECT_FLOAT_EQ(output.toTensor().const_data_ptr<float>()[i], 0.f);
}
// Section that was cat on should be 1.
for (size_t i = 0; i < 1 * 4; i++) {
EXPECT_FLOAT_EQ(
output.toTensor().const_data_ptr<float>()[(2 * 4) + i], 1.f);
}
// Set the input again to update the size.
sizes[0] = output.toTensor().sizes()[0];
executorch::aten::TensorImpl impl_2(
executorch::aten::ScalarType::Float,
2,
sizes,
buffer,
dim_order,
strides);
input_err = method->set_input(EValue(executorch::aten::Tensor(&impl_2)), 0);
ASSERT_EQ(input_err, Error::Ok);
// Execute the method again. Cat a 1x4 to a 3x4.
execute_error = method->execute();
ASSERT_EQ(execute_error, Error::Ok);
output = method->get_output(0);
EXPECT_EQ(output.toTensor().sizes()[0], 4);
EXPECT_EQ(output.toTensor().sizes()[1], 4);
// Original input should be 0.
for (size_t i = 0; i < 2 * 4; i++) {
EXPECT_FLOAT_EQ(output.toTensor().const_data_ptr<float>()[i], 0.f);
}
// Previous section and the new one that were cat on should be 1.
for (size_t i = 0; i < 2 * 4; i++) {
EXPECT_FLOAT_EQ(
output.toTensor().const_data_ptr<float>()[(2 * 4) + i], 1.f);
}
}
TEST_F(MethodTest, ConstantSegmentTest) {
// Execute model with constants stored in segment.
ManagedMemoryManager mmm(kDefaultNonConstMemBytes, kDefaultRuntimeMemBytes);
Result<Method> method =
programs_["linear"]->load_method("forward", &mmm.get());
ASSERT_EQ(method.error(), Error::Ok);
// Can execute the method.
Error err = method->execute();
ASSERT_EQ(err, Error::Ok);
}
TEST_F(MethodTest, ConstantBufferTest) {
// Execute model with constants stored in the program flatbuffer.
ManagedMemoryManager mmm(kDefaultNonConstMemBytes, kDefaultRuntimeMemBytes);
Result<Method> method =
programs_["linear_constant_buffer"]->load_method("forward", &mmm.get());
ASSERT_EQ(method.error(), Error::Ok);
// Can execute the method.
Error err = method->execute();
ASSERT_EQ(err, Error::Ok);
}
TEST_F(MethodTest, ProgramDataSeparationTest) {
ManagedMemoryManager mmm(kDefaultNonConstMemBytes, kDefaultRuntimeMemBytes);
Result<Method> method = programs_["linear_program"]->load_method(
"forward", &mmm.get(), nullptr, data_maps_["linear_data"].get());
ASSERT_EQ(method.error(), Error::Ok);
// Can execute the method.
Error err = method->execute();
ASSERT_EQ(err, Error::Ok);
}
TEST_F(MethodTest, MethodGetAttributeTest) {
ManagedMemoryManager mmm(kDefaultNonConstMemBytes, kDefaultRuntimeMemBytes);
Result<Method> method =
programs_["stateful"]->load_method("forward", &mmm.get());
ASSERT_EQ(method.error(), Error::Ok);
auto res = method->get_attribute("state");
ASSERT_TRUE(res.ok());
// expect data to be empty
EXPECT_EQ(res->const_data_ptr(), nullptr);
int32_t data = 0;
res->set_data(&data);
// expect data to be set
EXPECT_EQ(res->const_data_ptr(), &data);
// Can execute the method.
Error err = method->execute();
ASSERT_EQ(err, Error::Ok);
// Expect the state to be incremented
EXPECT_EQ(res->const_data_ptr<int32_t>()[0], 1);
}
/*
* TODO(T161163608): Test is disabled due to a resize bug in tensor_index_out of
* the portable op lib
TEST_F(MethodTest, OptionalTensorListDeserialization) {
ManagedMemoryManager mmm(kDefaultNonConstMemBytes,
kDefaultRuntimeMemBytes); Result<Method> method =
index_program_->load_method("forward", &mmm.get());
ASSERT_EQ(method.error(), Error::Ok);
// Can execute the method.
auto input_cleanup = prepare_input_tensors(*method);
ASSERT_EQ(input_cleanup.error(), Error::Ok);
Error err = method->execute();
ASSERT_EQ(err, Error::Ok);
EXPECT_EQ(method->inputs_size(), 1);
auto outputs = method->get_output(0);
EXPECT_EQ(outputs.toTensor().dim(), 3);
EXPECT_EQ(outputs.toTensor().size(0), 5);
EXPECT_EQ(outputs.toTensor().size(1), 2);
EXPECT_EQ(outputs.toTensor().size(2), 10);
}
*/