-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathuser.py
43 lines (32 loc) · 1.39 KB
/
user.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import os
import cv2
import numpy as np
from matplotlib import pyplot as plt
from main import dog_breeds
import tensorflow as tf
path_user_images = 'images_to_be_identified_user'
# loads the model
new_model = tf.keras.models.load_model(os.path.join('models', 'dog_breed_classifier_final.h5'))
# modify the above line to use a different model
user_img_data = []
img = 'No Image'
# predicts dog breed using the model
try:
for img in os.listdir(path_user_images):
user_img_data = cv2.imread(os.path.join(path_user_images, img), cv2.IMREAD_GRAYSCALE)
# , cv2.IMREAD_GRAYSCALE
resized_user_img_data = cv2.resize(user_img_data, (256, 256))
prediction = new_model.predict(np.array([resized_user_img_data]))
index = np.argmax(prediction)
print(f'The dog in image {img} is a {dog_breeds[index]}')
# code below is for showing the image with prediction on top
img_data_for_showing = cv2.imread(os.path.join(path_user_images, img))
resized_img_data_for_showing = cv2.resize(img_data_for_showing, (256, 256))
plt.imshow(resized_img_data_for_showing)
plt.imshow(cv2.cvtColor(resized_img_data_for_showing, cv2.COLOR_BGR2RGB))
plt.title(f'Prediction: {dog_breeds[index]}')
plt.axis('off')
plt.show()
# break
except (Exception, ):
print(f'Error with input image - {img}. Check file type/size/dimesions')