Skip to content

Commit 6820243

Browse files
committed
README.md
1 parent cfb2a8d commit 6820243

File tree

2 files changed

+80
-0
lines changed

2 files changed

+80
-0
lines changed

README.md

+40
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,40 @@
1+
<div align="center">
2+
3+
<h1> GraphRAG Visualization Tutorial </h1>
4+
This repository provides you with documents that have already undergone the Indexing pipeline, allowing you to quickly build and query knowledge graphs with Microsoft GraphRAG. Additionally, it includes documentation for visualization to facilitate quick implementation.
5+
<br><br>
6+
7+
**English** | [**中文**](./docs/CN/README.md)
8+
9+
</div>
10+
11+
## Prerequisites
12+
13+
Ensure you have read through the Microsoft GraphRAG [documentation](https://microsoft.github.io/graphrag/posts/get_started/) in English, or my [article](https://medium.com/@cch.chichieh/knowledge-graph-rag-microsoft-graphrag-%E5%AF%A6%E4%BD%9C%E8%88%87%E8%A6%96%E8%A6%BA%E5%8C%96%E6%95%99%E5%AD%B8-ac07991855e6) in Chinese.
14+
15+
## Environment Setup
16+
17+
Enter your OpenAI API or Azure OpenAI API key into `.env.sample` and rename it to `.env`.
18+
19+
## Visualization Usage
20+
21+
### Method 1: Using yFiles Graphs
22+
23+
Install the packages from requirements.txt, ensuring your Python version is between 3.10 and 3.12.
24+
25+
```bash
26+
pip install -r requirements.txt
27+
```
28+
29+
Then open [graph-visualization.ipynb](./graph-visualization.ipynb) and modify the INPUT_DIR to your indexing results directory. If you have downloaded the entire repo, the default settings should work.
30+
31+
### Method 2: Using GraphML and Third-Party Software
32+
33+
Enable GraphML output in settings.yaml:
34+
35+
```bash
36+
snapshots:
37+
graphml: True
38+
```
39+
40+
After completing the Indexing pipeline, open the generated GraphML file using tools such as Gephi or yEd Graph Editor.

docs/CN/README.md

+40
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,40 @@
1+
<div align="center">
2+
3+
<h1> GraphRAG Visualization Tutorial </h1>
4+
這個 repo 提供你已經做過 Indexing pipeline 的文件,讓你可以快速 Microsoft GraphRAG 進行知識圖譜的建立和問答;另外提供視覺化的文檔,方便你快速實作。
5+
<br><br>
6+
7+
[**English**](../../README.md) | **中文**
8+
9+
</div>
10+
11+
## 事前準備
12+
13+
確保你已經閱讀過 Microsoft GraphRAG 的[文檔-英文](https://microsoft.github.io/graphrag/posts/get_started/),或我的[文章-中文](https://medium.com/@cch.chichieh/knowledge-graph-rag-microsoft-graphrag-%E5%AF%A6%E4%BD%9C%E8%88%87%E8%A6%96%E8%A6%BA%E5%8C%96%E6%95%99%E5%AD%B8-ac07991855e6)
14+
15+
## 環境變數
16+
17+
將 OpenAI API 或 Azure OpenAI 的 API key 輸入到 `.env.sample` 中,便將其重新命名為 `.env`
18+
19+
## 視覺化使用
20+
21+
### 方法 1: 使用 yFiles Graphs
22+
23+
安裝 requirements.txt 套件,注意 Python 版本要在 3.10 到 3.12 之間。
24+
25+
```bash
26+
pip install -r requirements.txt
27+
```
28+
29+
接著打開 [graph-visualization.ipynb](../../graph-visualization.ipynb) 並修改 INPUT_DIR 為你的的索引結果目錄,如果你下載了整個 repo,使用預設即可。
30+
31+
### 方法 2: 使用 GraphML 和第三方軟體
32+
33+
在 settings.yaml 中啟用 GraphML 輸出:
34+
35+
```bash
36+
snapshots:
37+
graphml: True
38+
```
39+
40+
完成 Indexing pipeline 後,使用如 Gephi 或 yEd Graph Editor 等工具開啟生成的 GraphML 文件。

0 commit comments

Comments
 (0)